Dual specificity protein kinases (DSPKs) are unique enzymes that can execute multiple functions in the cell, which are otherwise performed exclusively by serine/threonine and tyrosine protein kinases. In this study, we have characterized the protein kinases Bas2152 (PrkD) and Bas2037 (PrkG) from Bacillus anthracis. Transcriptional analyses of these kinases showed that they are expressed in all phases of growth. In a serendipitous discovery, both kinases were found to be DSPKs. PrkD was found to be similar to the eukaryotic dual specificity Tyr phosphorylation-regulated kinase class of dual specificity kinases, which autophosphorylates on Ser, Thr, and Tyr residues and phosphorylates Ser and Thr residues on substrates. PrkG was found to be a bona fide dual specificity protein kinase that mediates autophosphorylation and substrate phosphorylation on Ser, Thr, and Tyr residues. The sites of phosphorylation in both of the kinases were identified through mass spectrometry. Phosphorylation on Tyr residues regulates the kinase activity of PrkD and PrkG. PrpC, the only known Ser/Thr protein phosphatase, was also found to possess dual specificity. Genistein, a known Tyr kinase inhibitor, was found to inhibit the activities of PrkD and PrkG and affect the growth of B. anthracis cells, indicating a possible role of these kinases in cell growth and development. In addition, the glycolytic enzyme pyruvate kinase was found to be phosphorylated by PrkD on Ser and Thr residues but not by PrkG. Thus, this study provides the first evidence of DSPKs in B. anthracis that belong to different classes and have different modes of regulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3411013 | PMC |
http://dx.doi.org/10.1074/jbc.M112.351304 | DOI Listing |
Background: Neuroblastoma is a heterogeneous disease with adrenergic (ADRN)- and therapy resistant mesenchymal (MES)-like cells driven by distinct transcription factor networks. Here, we investigate the expression of immunotherapeutic targets in each neuroblastoma subtype and propose pan-neuroblastoma and cell state specific targetable cell-surface proteins.
Methods: We characterized cell lines, patient-derived xenografts, and patient samples as ADRN-dominant or MES-dominant to define subtype-specific and pan-neuroblastoma gene sets.
Mol Cancer
January 2025
Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Background And Aims: Oncogenic KRAS mutations are present in approximately 90% of pancreatic ductal adenocarcinoma (PDAC). However, Kras mutation alone is insufficient to transform precancerous cells into metastatic PDAC. This study investigates how KRAS-mutated epithelial cells acquire the capacity to escape senescence or even immune clearance, thereby progressing to advanced PDAC.
View Article and Find Full Text PDFAbdom Radiol (NY)
January 2025
Department of Radiology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute,. Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, 610000, Chengdu, China.
Objective: This study evaluates the potential of dual-energy CT (DECT) for preoperative prediction of tumor budding (TB) and lymphovascular invasion (LVI) in colon cancer.
Methods: This prospective study enrolled 153 patients (mean age 61.33 years ± 0.
Sci Rep
January 2025
Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.
Pseudomonas aeruginosa is a Gram-negative bacterium that is notorious for airway infections in cystic fibrosis (CF) subjects. Bacterial quorum sensing (QS) coordinates virulence factor expression and biofilm formation at population level. Better understanding of QS in the bacterium-host interaction is required.
View Article and Find Full Text PDFBest Pract Res Clin Endocrinol Metab
January 2025
Department of Endocrinology, Seth G.S. Medical College and King Edward Memorial Hospital, Mumbai, India. Electronic address:
Adolescent primary hyperparathyroidism (PHPT) is a rare endocrine disorder bearing distinctions from the adult form. This review examines its unique aspects, focusing on clinical presentation, genetic etiologies, genotype-phenotype correlations, and therapeutic management. Adolescent PHPT often has a genetic basis, whether familial, syndromic, or apparently sporadic, and identifying the underlying genetic cause is important for patient care.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!