We report on the implementation of proton transfer reaction-mass spectrometry (PTR-MS) technology for on-line monitoring of volatile organic compounds (VOCs) in the off-gas of bioreactors. The main part of the work was focused on the development of an interface between the bioreactor and an analyzer suitable for continuous sampling of VOCs emanating from the bioprocess. The permanently heated sampling line with an inert surface avoids condensation and interaction of volatiles during transfer to the PTR-MS. The interface is equipped with a sterile sinter filter unit directly connected to the bioreactor headspace, a condensate trap, and a series of valves allowing for dilution of the headspace gas, in-process calibration, and multiport operation. To assess the aptitude of the entire system, a case study was conducted comprising three identical cultivations with a recombinant E. coli strain, and the volatiles produced in the course of the experiments were monitored with the PTR-MS. The high reproducibility of the measurements proved that the established sampling interface allows for reproducible transfer of volatiles from the headspace to the PTR-MS analyzer. The set of volatile compounds monitored comprises metabolites of different pathways with diverse functions in cell physiology but also volatiles from the process matrix. The trends of individual compounds showed diverse patterns. The recorded signal levels covered a dynamic range of more than five orders of magnitude. It was possible to assign specific volatile compounds to distinctive events in the bioprocess. The presented results clearly show that PTR-MS was successfully implemented as a powerful bioprocess-monitoring tool and that access to volatiles emitted by the cells opens promising perspectives in terms of advanced process control.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/bit.24579 | DOI Listing |
J Appl Clin Med Phys
December 2024
Department of Radiation Oncology, Lynn Cancer Institute, Boca Raton Regional Hospital, Baptist Health South Florida, Boca Raton, Florida, USA.
Purpose: A novel proton beam delivery method known as DynamicARC spot scanning has been introduced. The current study aims to determine whether the partial proton arc technique, in conjunction with DynamicARC pencil beam scanning (PBS), can meet clinical acceptance criteria for bilateral head and neck cancer (HNC) and provide an alternative to full proton arc and traditional intensity-modulated proton therapy (IMPT).
Method: The study retrospectively included anonymized CT datasets from ten patients with bilateral HNC, all of whom had previously received photon treatment.
Ultrasound Med Biol
December 2024
Department of Radiology, Liver Imaging Group, University of California San Diego, La Jolla, CA, USA.
Objectives: To implement, examine the feasibility of, and evaluate the performance of quantitative ultrasound (QUS) with a handheld point-of-care US (POCUS) device for assessing liver fat in adults.
Materials And Methods: This prospective IRB-approved, HIPAA-compliant pilot study enrolled adults with overweight or obesity. Participants underwent chemical-shift-encoded magnetic resonance imaging to estimate proton density fat fraction (PDFF) and, within 1 mo, QUS with a POCUS device by expert sonographers and novice operators (no prior US scanning experience).
Cancers (Basel)
November 2024
Radiotherapy and Radiation Dosimetry, National Physical Laboratory, Teddington TW11 0LW, UK.
: Spatial fractionation of proton fields as sub-millimeter beamlets to treat cancer has shown better sparing of healthy tissue whilst maintaining the same tumor control. It is critical to ensure primary standard dosimetry is accurate and ready to support the modality's clinical implementation. : This work provided a proof-of-concept, using the National Physical Laboratory's Primary Standard Proton Calorimeter (PSPC) to measure average absorbed dose-to-water in a pMBRT field.
View Article and Find Full Text PDFNanophotonics
June 2024
Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland.
Placing a material inside an optical cavity can enhance transport of excitation energy by hybridizing excitons with confined light modes into polaritons, which have a dispersion that provides these light-matter quasi-particles with low effective masses and very high group velocities. While in experiments, polariton propagation is typically initiated with laser pulses, tuned to be resonant either with the polaritonic branches that are delocalized over many molecules, or with an uncoupled higher-energy electronic excited state that is localized on a single molecule, practical implementations of polariton-mediated exciton transport into devices would require operation under low-intensity incoherent light conditions. Here, we propose to initiate polaritonic exciton transport with a photo-acid, which upon absorption of a photon in a spectral range not strongly reflected by the cavity mirrors, undergoes ultra-fast excited-state proton transfer into a red-shifted excited-state photo-product that can couple collectively with a large number of suitable dye molecules to the modes of the cavity.
View Article and Find Full Text PDFJ Pediatr Pharmacol Ther
December 2024
Department of Pharmacy (LL, SL, JWB), Texas Children's Hospital, Houston, TX.
Objectives: The primary aim of this study was to determine continuation rates of stress ulcer prophylaxis (SUP) upon transfer from a pediatric intensive care unit (PICU) to a general medicine unit and upon hospital discharge. The secondary aim was to identify patient characteristics or concomitant medications that were associated with continuation of SUP at transfer from the PICU.
Methods: This retrospective chart review included patients who were initiated on acid suppression for SUP in the PICU between June 2021 and May 2022 and subsequently transferred to a general medicine unit prior to discharge.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!