The gene tribbles (trbl), identified 12 years ago in genetic screens for mutations that control both cell division and cell migration during embryonic Drosophila development, is the founding member of the Tribbles (Trib) family of kinase-like proteins that have diverse roles in cell signaling, tissue homeostasis, and cancer. Trib proteins share three motifs: (1) a divergent kinase region (Trib domain) with undetermined catalytic activity, (2) a COP1 site used to direct key target proteins to the proteosome for degradation, and (3) a MEK1 site that binds and modulates MAPKK kinase activity. The notion that Tribs act as scaffolding proteins to balance signaling levels in multiple pathways retains an attractive simplicity, but given recent data showing that divergent kinases act by means of novel catalytic mechanisms, the enzymatic activity of Tribs remains untested. Here, we focus on the role of Tribs during development. Developmental analysis of Drosophila trbl phenotypes reveals tissue-specific, sometimes contradictory roles. In mammals, multiple Trib isoforms exhibit overlapping and tissue-specific functions. Recent data indicate the mechanism of Trib activity is conserved and requires the Trib domain. Finally, we discuss the connections between Tribs in disease and cancer that have implications for their normal roles during organogenesis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/dvdy.23822 | DOI Listing |
Cancers (Basel)
December 2021
Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, 3584 CG Utrecht, The Netherlands.
The three human Tribbles (TRIB) pseudokinases have been implicated in a plethora of signaling and metabolic processes linked to cancer initiation and progression and can potentially be used as biomarkers of disease and prognosis. While their modes of action reported so far center around protein-protein interactions, the comprehensive profiling of TRIB interactomes has not been reported yet. Here, we have developed a robust mass spectrometry (MS)-based proteomics approach to characterize Tribbles' interactomes and report a comprehensive assessment and comparison of the TRIB1, -2 and -3 interactomes, as well as domain-specific interactions for TRIB3.
View Article and Find Full Text PDFProteins
April 2022
National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan.
Tribbles pseudokinases, Tribbles homolog 1 (TRIB1), Tribbles homolog 2 (TRIB2), and Tribbles homolog 3 (TRIB3), bind to constitutive photomorphogenesis protein 1 (COP1) E3 ligase to mediate the regulation of β-catenin expression. The interaction mechanism between COP1 E3 ligase and β-catenin has not been addressed to date. Based on the functional presence of TRIBs in wingless-related integration site (WNT) signaling, we analyzed their interaction patterns with β-catenin and COP1.
View Article and Find Full Text PDFBiol Reprod
May 2020
Département de Biomédecine Vétérinaire, Faculté de Médecine Vétérinaire, Centre de Recherche en Reproduction et Fertilité (CRRF), Université de Montréal, St-Hyacinthe, Québec, Canada.
Tribbles homologs (TRIB) 1, 2, and 3 represent atypical members of the serine/threonine kinase superfamily. We previously identified TRIB2 as a differentially expressed gene in granulosa cells (GCs) of bovine preovulatory follicles. The current study aimed to further investigate TRIB2 regulation and study its function in the ovary.
View Article and Find Full Text PDFTrends Cell Biol
April 2017
Institute of Bioinformatics, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA. Electronic address:
The Tribbles (TRIB) pseudokinases control multiple aspects of eukaryotic cell biology and evolved unique features distinguishing them from all other protein kinases. The atypical pseudokinase domain retains a regulated binding platform for substrates, which are ubiquitinated by context-specific E3 ligases. This plastic configuration has also been exploited as a scaffold to support the modulation of canonical MAPK and AKT modules.
View Article and Find Full Text PDFStructure
May 2016
Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA. Electronic address:
COP1 proteins are E3 ubiquitin ligases that regulate phototropism in plants and target transcription factors for degradation in mammals. The substrate-binding region of COP1 resides within a WD40-repeat domain that also binds to Trib proteins, which are adaptors for C/EBPα degradation. Here we report structures of the human COP1 WD40 domain in isolation, and complexes of the human and Arabidopsis thaliana COP1 WD40 domains with the binding motif of Trib1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!