This paper describes methods for design, manufacturing and characterization of a micro-mechanical valve for a novel glaucoma implant. The implant is designed to drain aqueous humour from the anterior chamber of the eye into the suprachoroidal space in case of an elevated intraocular pressure (IOP). In contrast to any existing glaucoma drainage device (GDD), the valve mechanism is located in the anterior chamber and there, surrounded by aqueous humour, immune to fibrosis induced failure. For the prevention of hypotony the micro-mechanical valve is designed to open if the physiological pressure difference between the anterior chamber and the suprachoroidal space in the range of 0.8 mmHg to 3.7 mmHg is exceeded. In particular the work includes: (i) manufacturing and morphological characterization of polymer tubing, (ii) mechanical material testing as basis for (iii) the design of micro-mechanical valves using finite element analysis (FEA), (iv) manufacturing of microstent prototypes including micro-mechanical valves by femtosecond laser micromachining and (v) the experimental fluid-mechanical characterization of the manufactured microstent prototypes with regard to valve opening pressure. The considered materials polyurethane (PUR) and silicone (SIL) exhibit low elastic modulus and high extensibility. The unique valve design enables a low opening pressure of micro-mechanical valves. An ideal valve design for PUR and SIL with an experimentally determined opening pressure of 2 mmHg and 3.7 mmHg is identified. The presented valve approach is suitable for the inhibition of hypotony as a major limitation of today's GDD and will potentially improve the minimally invasive treatment of glaucoma.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10544-012-9670-7DOI Listing

Publication Analysis

Top Keywords

micro-mechanical valve
12
anterior chamber
12
micro-mechanical valves
12
opening pressure
12
valve
8
valve novel
8
novel glaucoma
8
glaucoma implant
8
aqueous humour
8
suprachoroidal space
8

Similar Publications

Quantifying heart valve interstitial cell contractile state using highly tunable poly(ethylene glycol) hydrogels.

Acta Biomater

September 2019

James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, 240 East 24th Street, Austin, TX 78712, United States. Electronic address:

Valve interstitial cells (VIC) are the primary cell type residing within heart valve tissues. In many valve pathologies, VICs become activated and will subsequently profoundly remodel the valve tissue extracellular matrix (ECM). A primary indicator of VIC activation is the upregulation of α-smooth muscle actin (αSMA) stress fibers, which in turn increase VIC contractility.

View Article and Find Full Text PDF

Screening for Host Factors Directly Interacting with RSV Protein: Microfluidics.

Methods Mol Biol

January 2018

Nanotechnology Institute, Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel.

We present a high-throughput microfluidics platform to identify novel host cell binding partners of respiratory syncytial virus (RSV) matrix (M) protein. The device consists of thousands of reaction chambers controlled by micro-mechanical valves. The microfluidic device is mated to a microarray-printed custom-made gene library.

View Article and Find Full Text PDF

Background: Glaucoma is the leading cause of irreversible blindness worldwide. In therapeutically refractory cases, alloplastic glaucoma drainage devices (GDD) are being increasingly used to decrease intraocular pressure. Current devices are mainly limited by fibrotic encapsulation and postoperative hypotension.

View Article and Find Full Text PDF

The semilunar (aortic and pulmonary) heart valves function under dramatically different hemodynamic environments, and have been shown to exhibit differences in mechanical properties, extracellular matrix (ECM) structure, and valve interstitial cell (VIC) biosynthetic activity. However, the relationship between VIC function and the unique micromechanical environment in each semilunar heart valve remains unclear. In the present study, we quantitatively compared porcine semilunar mRNA expression of primary ECM constituents, and layer- and valve-specific VIC-collagen mechanical interactions under increasing transvalvular pressure (TVP).

View Article and Find Full Text PDF

Universal logic gates via liquid-electronic hybrid divider.

Lab Chip

December 2012

Nano Science and Technology Program and KAUST-HKUST Micro/Nanofluidic Joint Laboratory, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.

We demonstrated two-input microdroplet-based universal logic gates using a liquid-electronic hybrid divider. All 16 Boolean logic functions have been realized by manipulating the applied voltages. The novel platform consists of a microfluidic chip with integrated microdroplet detectors and external electronic components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!