Brachypodium distachyon is a grass species that serves as a useful model for wheat and also for many of the grass species proposed as feedstocks for bioenergy production. Here, we monitored B. distachyon symbioses with five different arbuscular mycorrhizal (AM) fungi and identified symbioses that vary functionally with respect to plant performance. Three symbioses promoted significant increases in shoot phosphorus (P) content and shoot growth of Brachypodium, while two associations were neutral. The Brachypodium/Glomus candidum symbiosis showed a classic 'Paris-type' morphology. In the other four AM symbioses, hyphal growth was exclusively intracellular and linear; hyphal coils were not observed and arbuscules were abundant. Expression of the Brachypodium ortholog of the symbiosis-specific phosphate (Pi) transporter MtPT4 did not differ significantly in these five interactions indicating that the lack of apparent functionality did not result from a failure to express this gene or several other AM symbiosis-associated genes. Analysis of the expression patterns of the complete PHT1 Pi transporter gene family and AMT2 gene family in B. distachyon/G. intraradices mycorrhizal roots identified additional family members induced during symbiosis and again, transcript levels were similar in the different Brachypodium AM symbioses. This initial morphological, molecular and functional characterization provides a framework for future studies of functional diversity in AM symbiosis in B. distachyon.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00425-012-1677-zDOI Listing

Publication Analysis

Top Keywords

arbuscular mycorrhizal
8
brachypodium distachyon
8
grass species
8
gene family
8
symbioses
6
brachypodium
5
diversity morphology
4
morphology function
4
function arbuscular
4
mycorrhizal symbioses
4

Similar Publications

It is well known that individual pea ( L.) cultivars differ in their symbiotic responsivity. This trait is typically manifested with an increase in seed weights, due to inoculation with rhizobial bacteria and arbuscular mycorrhizal fungi.

View Article and Find Full Text PDF

Arbuscular mycorrhizal fungi (AMF) can preferentially absorb the released ammonium (NH) over nitrate (NO) during litter decomposition. However, the impact of AMF's absorption of NH on litter nitrogen (N) decomposition is still unclear. In this study, we investigated the effects of AMF uptake for NH on litter N metabolic characteristics by enriching NH via AMF suppression and nitrification inhibition in a subtropical forest.

View Article and Find Full Text PDF

A pair of LysM receptors mediates symbiosis and immunity discrimination in Marchantia.

Cell

January 2025

New Cornerstone Science Laboratory, Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, SIBS, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences and Technology, Shanghai Tech University, Shanghai 201210, China. Electronic address:

Most land plants form symbioses with microbes to acquire nutrients but also must restrict infection by pathogens. Here, we show that a single pair of lysin-motif-containing receptor-like kinases, MpaLYR and MpaCERK1, mediates both immunity and symbiosis in the liverwort Marchantia paleacea. MpaLYR has a higher affinity for long-chain (CO7) versus short-chain chitin oligomers (CO4).

View Article and Find Full Text PDF

The impact of arbuscular mycorrhizal colonization on flooding response of .

Front Plant Sci

January 2025

Department of General and Applied Botany, Institute of Biology, Leipzig University, Leipzig, Germany.

Climate change is expected to lead to an increase in precipitation and flooding. Consequently, plants that are adapted to dry conditions have to adjust to frequent flooding periods. In this study, we investigate the flooding response of , a Mediterranean plant adapted to warm and dry conditions.

View Article and Find Full Text PDF

Long-term diverse straw management influences arbuscular mycorrhizal fungal community structure and plant growth in a rice-rotated wheat cropping system.

J Environ Manage

January 2025

College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Key Laboratory for Information Agriculture, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China. Electronic address:

Communities of arbuscular mycorrhizal fungi (AMF) in soil are influenced by various agricultural managements, which in turn affects crop productivity. However, the impacts of straw returning on AMF communities are sparsely understood. Here, a 7-year field experiment including three sets of straw managements - returning methods (CK: no-tillage without straw; RT-SR: rotary tillage with straw; DB-SR: ditch-buried tillage with straw), burial amount, burial depth - were applied to evaluate the influences of straw managements on AMF composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!