Purpose: Age-related decline in cognitive speed has been associated with prefrontal dopamine D1 receptor availability, but the contribution of presynaptic dopamine and noradrenaline innervation to age-related changes in cognition is unknown.

Methods: In a group of 16 healthy participants aged 22-61 years, we used PET and the radioligand FDOPA to measure catecholamine synthesis capacity (K (in) (app); millilitres per gram per minute) and the digit symbol substitution test to measure cognitive speed, a component of fluid IQ.

Results: Cognitive speed was associated with the magnitude of K (in) (app) in the prefrontal cortex (p < 0.0005). Both cognitive speed (p = 0.003) and FDOPA K (in) (app) (p < 0.0005) declined with age, both in a standard voxel-wise analysis and in a volume-of-interest analysis with partial volume correction, and the correlation between cognitive speed and K (in) (app) remained significant beyond the effects of age (p = 0.047). MR-based segmentation revealed that these age-related declines were not attributable to age-related alterations in grey matter density.

Conclusion: Our findings indicate that age-related changes in the capacity of the prefrontal cortex to synthesize catecholamines, irrespective of cortical atrophy, may underlie age-related decline in cognitive speed.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00259-012-2162-4DOI Listing

Publication Analysis

Top Keywords

cognitive speed
28
age-related changes
12
catecholamine synthesis
8
grey matter
8
age-related decline
8
decline cognitive
8
speed associated
8
prefrontal cortex
8
age-related
7
cognitive
7

Similar Publications

Background: As humans age, some experience cognitive impairment while others do not. When impairment occurs, it varies in severity across individuals. Translationally relevant models are critical for understanding the neurobiological drivers of this variability, which is essential to uncovering the mechanisms underlying the brain's susceptibility to aging.

View Article and Find Full Text PDF

Recent discoveries indicating that the brain retains its ability to adapt and change throughout life have sparked interest in cognitive training (CT) as a possible means to postpone the development of dementia. Despite this, most research has focused on confirming the efficacy of training outcomes, with few studies examining the correlation between performance and results across various stages of training. In particular, the relationship between initial performance and the extent of improvement, the rate of learning, and the asymptotic performance level throughout the learning curve remains ambiguous.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA, USA.

Background: Levels of inflammatory components gradually rise in tissues and blood as we age. This "inflammageing" process is often debilitating and even fatal. Cognitive impairment is one example of inflammageing's incapacitating nature.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is sometimes characterized as "type 3 diabetes" because hyperglycemia impairs cognitive function, particularly in the medial temporal lobe (MTL) and prefrontal regions. Further, both AD and type 2 diabetes (T2D) disproportionately impact African Americans. Although people with T2D are generally suggested to have lower episodic memory and executive function, limited data exist in older African Americans.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Departments of Neurology and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Background: Protective brain barriers, such as blood-brain barrier, become dysfunctional with age. The BBB is a dynamic and selective barrier, gating the passage of molecules and cells to and from the brain. The function of this barrier is critical for the maintenance of brain homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!