Background: The ventricular components (QRS and QT) on the electrocardiogram (ECG) depend on the properties of ventricular action potentials that can be modulated by drugs via specific ion channels. However, the correlation of ECG ventricular waveforms with underlying ion actions is not well established and has been extensively debated.
Objective: To conduct a blinded in vitro assessment of the ionic mechanisms for drug-induced ECG changes.
Methods And Results: Fourteen cardiac and noncardiac drugs with known effects on cardiac ion channels were selected by the study sponsor, and were tested in the rabbit left ventricular wedge preparation with recording of the ECG and contractility. The investigators who performed the experiments and analyzed the data were blinded to names, concentrations, and molecular weights of the drugs. The compounds were prepared by the sponsor and sent to the investigators as 56 stock solutions. The effects of I(Kr), I(Ks), I(Ca,L), I(Na) blocker, and I(KATP) opener on QRS, QT, and T(p-e), were evaluated. Disclosure of the names and concentrations after completion of the study revealed that there were highly correlated ECG changes with underlying ionic mechanisms and proarrhythmic potential of drugs that, respectively, target I(Kr), I(Ks), I(Ca,L), I(Na), and I(KATP). Among ECG parameters, T(p-e) was more useful in differentiating drugs' actions.
Conclusions: Specific electrophysiological action and the consequent proarrhythmic potential of a drug can be accurately determined by analysis of drug-induced changes in ECG in the rabbit left ventricular wedge preparation. Change in T(p-e) provides the most relevant information.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.hrthm.2012.06.030 | DOI Listing |
Orphanet J Rare Dis
January 2025
Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, 6-1 Kishibe-Shimmachi, Suita, Osaka, 564-8565, Japan.
Background: Transient receptor potential cation channel subfamily V member 2 (TRPV2) functions as a stretch-sensitive calcium channel, with overexpression in the sarcolemma of skeletal and cardiac myocytes leading to detrimental calcium influx and triggering muscle degeneration. In our previous pilot study, we showed that tranilast, a TRPV2 inhibitor, reduced brain natriuretic peptide levels in two patients with muscular dystrophy and advanced heart failure. Building on this, we performed a single-arm, open-label, multicenter study herein to evaluate the safety and efficacy of tranilast in the treatment of advanced heart failure in patients with muscular dystrophy.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Pulmonology, Semmelweis University, Budapest, Hungary.
Background: Post-COVID condition (PCC) is characterized by persisting symptoms after the resolution of acute COVID-19. Remdesivir (RDV), a broad-spectrum antiviral drug, has been widely used in patients hospitalized with COVID-19 requiring oxygen therapy. We aimed to evaluate the effects of RDV on PCC by assessing patient-reported and functional outcomes.
View Article and Find Full Text PDFAm J Hypertens
January 2025
Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University; Xuzhou 221004, China.
Background: Polo-like kinase 2 (PLK2) is associated with cardiac fibrosis in patients with atrial fibrillation. However, the role of PLK2 in sepsis-induced cardiac injury has not been fully elucidated. We hypothesize that PLK2 may participate in the progression of sepsis-induced cardiac injury.
View Article and Find Full Text PDFNat Commun
January 2025
Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China.
Liver fibrosis is a critical liver disease that can progress to more severe manifestations, such as cirrhosis, yet no effective targeted therapies are available. Here, we identify that ATF4, a master transcription factor in ER stress response, promotes liver fibrosis by facilitating a stress response-independent epigenetic program in hepatic stellate cells (HSCs). Unlike its canonical role in regulating UPR genes during ER stress, ATF4 activates epithelial-mesenchymal transition (EMT) gene transcription under fibrogenic conditions.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.
The integration of radar technology into smart furniture represents a practical approach to health monitoring, circumventing the concerns regarding user convenience and privacy often encountered by conventional smart home systems. Radar technology's inherent non-contact methodology, privacy-preserving features, adaptability to diverse environmental conditions, and high precision characteristics collectively establish it a compelling alternative for comprehensive health monitoring within domestic environments. In this paper, we introduce a millimeter (mm)-wave radar system positioned strategically behind a seat, featuring an algorithm capable of identifying unique cardiac waveform patterns for healthy subjects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!