Persistence of transferable extended-spectrum-β-lactamase resistance in the absence of antibiotic pressure.

Antimicrob Agents Chemother

School of Immunity and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom.

Published: September 2012

The treatment of infections caused by antibiotic-resistant bacteria is one of the great challenges faced by clinicians in the 21st century. Antibiotic resistance genes are often transferred between bacteria by mobile genetic vectors called plasmids. It is commonly believed that removal of antibiotic pressure will reduce the numbers of antibiotic-resistant bacteria due to the perception that carriage of resistance imposes a fitness cost on the bacterium. This study investigated the ability of the plasmid pCT, a globally distributed plasmid that carries an extended-spectrum-β-lactamase (ESBL) resistance gene (bla(CTX-M-14)), to persist and disseminate in the absence of antibiotic pressure. We investigated key attributes in plasmid success, including conjugation frequencies, bacterial-host growth rates, ability to cause infection, and impact on the fitness of host strains. We also determined the contribution of the bla(CTX-M-14) gene itself to the biology of the plasmid and host bacterium. Carriage of pCT was found to impose no detectable fitness cost on various bacterial hosts. An absence of antibiotic pressure and inactivation of the antibiotic resistance gene also had no effect on plasmid persistence, conjugation frequency, or bacterial-host biology. In conclusion, plasmids such as pCT have evolved to impose little impact on host strains. Therefore, the persistence of antibiotic resistance genes and their vectors is to be expected in the absence of antibiotic selective pressure regardless of antibiotic stewardship. Other means to reduce plasmid stability are needed to prevent the persistence of these vectors and the antibiotic resistance genes they carry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3421869PMC
http://dx.doi.org/10.1128/AAC.00848-12DOI Listing

Publication Analysis

Top Keywords

absence antibiotic
16
antibiotic pressure
16
antibiotic resistance
16
resistance genes
12
antibiotic
10
antibiotic-resistant bacteria
8
fitness cost
8
resistance gene
8
host strains
8
resistance
7

Similar Publications

A plasmid with the gene enhances the fitness of strains under laboratory conditions.

Microbiology (Reading)

January 2025

Instituto de Microbiologa, Colegio de Ciencias Biolgicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador.

Antimicrobial resistance (AMR) is a major threat to global public health that continues to grow owing to selective pressure caused by the use and overuse of antimicrobial drugs. Resistance spread by plasmids is of special concern, as they can mediate a wide distribution of AMR genes, including those encoding extended-spectrum -lactamases (ESBLs). The CTX-M family of ESBLs has rapidly spread worldwide, playing a large role in the declining effectiveness of third-generation cephalosporins.

View Article and Find Full Text PDF

Unlabelled: Mutations affecting flagellin (FliC) have been shown to be hypervirulent in animal models and display increased toxin production and alterations in central metabolism. The regulation of flagellin levels in bacteria is governed by a tripartite regulatory network involving , , and , which creates a feedback system to regulate flagella production. Through genomic analysis of clade 5 strains (non-motile), we identified they have jettisoned many of the genes required for flagellum biosynthesis yet retain the major flagellin gene and regulatory gene .

View Article and Find Full Text PDF

Background: Sepsis management in the Intensive Care Unit (ICU) presents a significant challenge within contemporary healthcare. The primary challenge lies in ensuring the timely and appropriate utilization of antibiotics. Inappropriate antibiotic use in sepsis management can result in a multitude of adverse outcomes.

View Article and Find Full Text PDF

Background: is a significant cause of healthcare-associated infections, with rising antimicrobial resistance complicating treatment. This study offers a genomic analysis of , focusing on sequence types (STs), global distribution, antibiotic resistance genes, and virulence factors in its chromosomal and plasmid DNA.

Methods: A total of 19,711 genomes were retrieved from GenBank.

View Article and Find Full Text PDF

The ban on antibiotics in the poultry diet resulted in re-emergence of several infectious diseases including necrotic enteritis (NE). These infectious diseases are leading to poor health and welfare as well as production and economic loss. Synbiotic could be a potential candidate to replace the antibiotics in poultry diet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!