Raman line widths of neat benzenethiol and a self-assembled monolayer (SAM) of benzenethiol on a surface-enhanced Raman scattering (SERS) substrate have been measured using a mini spectrometer with a resolution (full width at half-maximum) of 3.3 ± 0.2 cm(-1). Values of 7.3 ± 0.7, 4.6 ± 0.6, 2.4 ± 0.6, 3.2 ± 0.5, 8.8 ± 0.9, and 11.0 ± 1.1 cm(-1) have been determined for the Raman line widths of the 414, 700, 1001, 1026, 1093, and 1584 cm(-1) modes of neat benzenethiol. Values of 13.3 ± 0.7, 9.1 ± 0.7, 5.1 ± 0.6, 5.9 ± 0.6, 13.3 ± 0.5, and 8.7 ± 0.5 cm(-1) have been determined for the SERS line widths of a benzenethiol SAM on a silver-coated SERS substrate for the corresponding frequency-shifted modes at 420, 691, 1000, 1023, 1072, and 1574 cm(-1). The line widths for the SERS modes at 420, 691, 1000, 1023, and 1072 cm(-1) are about a factor of two larger than those of the corresponding Raman modes. However, the line width of the SERS mode at 1574 cm(-1) is slightly smaller than the corresponding Raman mode at 1584 cm(-1).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1366/12-06597 | DOI Listing |
Materials (Basel)
December 2024
Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland.
A sonochemical synthesis of SnS quantum dots using acetone as a solvent is investigated. Two different tin sources (SnCl∙2HO or SnCl∙5HO) as well as two different sulfur sources (thioacetamide or NaSO) were applied. The sonication time was also varied between 60 and 120 min.
View Article and Find Full Text PDFSmall Methods
January 2025
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
Bilayer graphene ribbons (GRs) hold great promise for the fabrication of next-generation nanodevices, thanks to unparalleled electronic properties, especially the tunable bandgap in association with twist angle, ribbon width, edge structure, and interlayer coupling. A common challenge in manufacturing bilayer GRs via templated chemical vapor deposition (CVD) approach is uncontrollable dewetting of micro- and nano-scaled patterned metal substrates. Herein, a confined CVD synthetic strategy of bilayer GR arrays is proposed, by utilizing the bifunctional Ni as a buffered adhesion layer to regulate the anisotropic dewetting of metal film in the V-groove and as a carbon-dissolution regulated metal to initiate the bilayer nucleation.
View Article and Find Full Text PDFLight Sci Appl
January 2025
Department of Electronics and Nanoengineering, Aalto University, Espoo, Finland.
Coherent broadband light generation has attracted massive attention due to its numerous applications ranging from metrology, sensing, and imaging to communication. In general, spectral broadening is realized via third-order and higher-order nonlinear optical processes (e.g.
View Article and Find Full Text PDFSci Bull (Beijing)
December 2024
Department of Chemistry, Laboratory of Advance Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and iChEM, Fudan University, Shanghai 200433, China. Electronic address:
Hierarchical organization is prevalent in nature, yet the artificial construction of hierarchical materials featuring asymmetric structures remains a big challenge. Herein, we report a stress-induced self-assembly strategy for the synthesis of hierarchically twisted stripe arrays (HTSAs) with mesoporous structures. A soft and thin mesostructured film assembled by micelles and TiO oligomers is the prerequisite.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
Department of Physics and Quantum Photonics Institute, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
Two-dimensional materials with a nanostructure have been introduced as promising candidates for SERS platforms for sensing application. However, the dynamic control and tuning of SERS remains a long-standing problem. Here, we demonstrated active tuning of the enhancement factor of the first- and second-order Raman mode of monolayer (1L) MoS transferred onto a flexible metallic nanotip array.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!