Five experiments investigated the ability to discriminate between musical timbres based on vibrotactile stimulation alone. Participants made same/different judgments on pairs of complex waveforms presented sequentially to the back through voice coils embedded in a conforming chair. Discrimination between cello, piano, and trombone tones matched for F0, duration, and magnitude was above chance with white noise masking the sound output of the voice coils (Experiment 1), with additional masking to control for bone-conducted sound (Experiment 2), and among a group of deaf individuals (Experiment 4a). Hearing (Experiment 3) and deaf individuals (Experiment 4b) also successfully discriminated between dull and bright timbres varying only with regard to spectral centroid. We propose that, as with auditory discrimination of musical timbre, vibrotactile discrimination may involve the cortical integration of filtered output from frequency-tuned mechanoreceptors functioning as critical bands.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1037/a0029046 | DOI Listing |
Sensors (Basel)
December 2024
Department of Physical Activity and Rehabilitation Sciences, University of Liege, 4000 Liege, Belgium.
People with fibromyalgia syndrome (FMS) may have difficulty attending rehabilitation sessions. We investigated the feasibility (adherence and satisfaction) of implementing an 8-week home-based somatosensory, entirely remote, self-training programme using the TrainPain smartphone app in people with FMS. The secondary aim was to evaluate the effect on pain symptoms.
View Article and Find Full Text PDFSci Robot
December 2024
CHARM Laboratory, Stanford, CA, USA.
Haptic devices typically rely on rigid actuators and bulky power supply systems, limiting wearability. Soft materials improve comfort, but careful distribution of stiffness is required to ground actuation forces and enable load transfer to the skin. We present Haptiknit, an approach in which soft, wearable, knit textiles with embedded pneumatic actuators enable programmable haptic display.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Departamento de Física Teórica, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
Perception is influenced by sensory stimulation, prior knowledge, and contextual cues, which collectively contribute to the emergence of perceptual biases. However, the precise neural mechanisms underlying these biases remain poorly understood. This study aims to address this gap by analyzing neural recordings from the prefrontal cortex (PFC) of monkeys performing a vibrotactile frequency discrimination task.
View Article and Find Full Text PDFJ Neuroeng Rehabil
September 2024
Faculty of Biology and Psychology, Georg-August University, Goßlerstr. 14, 37073, Göttingen, Germany.
Background: Planning and executing movements requires the integration of different sensory modalities, such as vision and proprioception. However, neurological diseases like stroke can lead to full or partial loss of proprioception, resulting in impaired movements. Recent advances focused on providing additional sensory feedback to patients to compensate for the sensory loss, proving vibrotactile stimulation to be a viable option as it is inexpensive and easy to implement.
View Article and Find Full Text PDFPeerJ Comput Sci
July 2024
Department of Mechanical Engineering, University of Wisconsin-Milwaukee, Milwaukee, WI, United States of America.
Background: The current study explores the integration of a motor imagery (MI)-based BCI system with robotic rehabilitation designed for upper limb function recovery in stroke patients.
Methods: We developed a tablet deployable BCI control of the virtual iTbot for ease of use. Twelve right-handed healthy adults participated in this study, which involved a novel BCI training approach incorporating tactile vibration stimulation during MI tasks.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!