Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This review will summarize and discuss the current biological understanding of the motile eukaryotic flagellum, as posed out by recent advances enabled by post-genomics and proteomics approaches. The organelle, which is crucial for motility, survival, differentiation, reproduction, division and feeding, among other activities, of many eukaryotes, is a great example of a natural nanomachine assembled mostly by proteins (around 350-650 of them) that have been conserved throughout eukaryotic evolution. Flagellar proteins are discussed in terms of their arrangement on to the axoneme, the canonical "9+2" microtubule pattern, and also motor and sensorial elements that have been detected by recent proteomic analyses in organisms such as Chlamydomonas reinhardtii, sea urchin, and trypanosomatids. Such findings can be remarkably matched up to important discoveries in vertebrate and mammalian types as diverse as sperm cells, ciliated kidney epithelia, respiratory and oviductal cilia, and neuro-epithelia, among others. Here we will focus on some exciting work regarding eukaryotic flagellar proteins, particularly using the flagellar proteome of C. reinhardtii as a reference map for exploring motility in function, dysfunction and pathogenic flagellates. The reference map for the eukaryotic flagellar proteome consists of 652 proteins that include known structural and intraflagellar transport (IFT) proteins, less wellcharacterized signal transduction proteins and flagellar associated proteins (FAPs), besides almost two hundred unannotated conserved proteins, which lately have been the subject of intense investigation and of our present examination.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3499766 | PMC |
http://dx.doi.org/10.2174/138920312803582951 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!