Impaction bone grafting (IBG) with human allograft remains the preferred approach for replacement of lost bone stock during revision hip surgery. Associated problems include cost, disease transmission, and stem subsidence. Synthetic grafts are therefore appealing, and ideally display similar mechanical characteristics as allograft, but with enhanced ability to form de novo bone. High and low molecular weight forms of three different polymers [poly(DL-lactide) (P(DL) LA), poly(DL-lactide-co-glycolide) (P(DL) LGA), and poly(ε-caprolactone) (PCL)] were milled, impacted into discs, and then examined in a shear testing rig, in comparison to allograft. In addition, skeletal stem cells (SSCs) were combined with each of the milled polymers, followed by impaction and examination for cell viability and number, via fluorostaining and biochemical assays. The shear strengths of high/low mwt P(DL) LA, and high/low mwt P(DL) LGA were significantly higher than allograft (p < 0.01). High/low mwt PCL had significantly lower shear strengths (p < 0.01). WST-1 assay and fluorstaining indicated significantly increased cell viability on high mwt P(DL) LA and high mwt P(DL) LGA over allograft (p < 0.05). Mechanical and biochemical analysis indicated improved properties of high mwt P(DL) LA and high mwt P(DL) LGA over allograft. This study indicates the potential of these polymers for use as substitute human allograft, creating a living composition with SSC for application in IBG.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.34264DOI Listing

Publication Analysis

Top Keywords

mwt pdl
24
pdl lga
16
high mwt
16
high/low mwt
12
impaction bone
8
bone grafting
8
human allograft
8
pdl
8
cell viability
8
shear strengths
8

Similar Publications

Impaction bone grafting (IBG) with human allograft remains the preferred approach for replacement of lost bone stock during revision hip surgery. Associated problems include cost, disease transmission, and stem subsidence. Synthetic grafts are therefore appealing, and ideally display similar mechanical characteristics as allograft, but with enhanced ability to form de novo bone.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!