EGCG targeting efficacy of NF-κB downstream gene products is dictated by the monocytic/macrophagic differentiation status of promyelocytic leukemia cells.

Cancer Immunol Immunother

Laboratoire d'Oncologie Moléculaire, Département de Chimie, Centre de Recherche BioMED, Université du Québec à Montréal, C.P. 8888, Succ. Centre-ville, Montréal, QC, H3C 3P8, Canada.

Published: December 2012

Central nervous system infiltration by circulating leukemic cells and enhanced in vitro transendothelial migration of promyelocytic leukemia HL-60-derived macrophages through a blood-brain barrier model was recently demonstrated. The intrinsic molecular and signaling mechanisms involved are, however, poorly documented. Drug targeting of such translocation event performed by circulating microbes and immune cells may prevent secondary cerebral infections and development of brain pathologies. In this study, we specifically investigated the in vitro targeting efficacy of the chemopreventive and dietary-derived epigallocatechin-3-gallate (EGCG) molecule on the NF-κB-mediated transcriptional regulation of a panel of 89 biomarkers associated with promyelocytic HL-60 differentiation into macrophages. NF-κB-mediated signaling during HL-60 macrophage differentiation was reversed by EGCG, in part through reduced IκB phosphorylation and led to the inhibition of moderately to highly expressed NF-κB gene targets among which the matrix metalloproteinase (MMP)-9 and the cyclooxygenase (COX)-2. In contrast, EGCG exhibited low efficacy in reversing NF-κB-regulated genes and showed selective antagonism toward COX-2 expression while that of MMP-9 remained high in terminally differentiated macrophages. Decreased expression of the 67-kDa non-integrin Laminin Receptor in terminally differentiated macrophages may explain such differential EGCG efficacy. Our results suggest that terminally differentiated macrophage transendothelial migration associated with neuroinflammation may not be pharmacologically affected by such a specific class of flavonoid. The differentiation status of a given in vitro cell model must therefore be carefully considered for optimized assessment of therapeutic drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11028810PMC
http://dx.doi.org/10.1007/s00262-012-1301-xDOI Listing

Publication Analysis

Top Keywords

terminally differentiated
12
targeting efficacy
8
differentiation status
8
promyelocytic leukemia
8
transendothelial migration
8
differentiated macrophages
8
egcg
5
egcg targeting
4
efficacy
4
efficacy nf-κb
4

Similar Publications

Background: Tick-borne encephalitis (TBE) is the most common tick-borne viral infection in Eurasia. Outcomes range from asymptomatic infection to fatal encephalitis, with host genetics likely playing a role. BALB/c mice have intermediate susceptibility to TBE virus (TBEV) and STS mice are highly resistant, whereas the recombinant congenic strain CcS-11, which carries 12.

View Article and Find Full Text PDF

Aims/hypothesis: Within the small intestine, neutrophils play an integral role in preventing bacterial infection. Upon interaction with bacteria or bacteria-derived antigens, neutrophils initiate a multi-staged response of which the terminal stage is NETosis, formation of protease-decorated nuclear DNA into extracellular traps. NETosis has a great propensity to elicit ocular damage and has been associated with diabetic retinopathy and diabetic macular oedema (DME) progression.

View Article and Find Full Text PDF

Introduction: Bruton's tyrosine kinase (BTK) is a cytoplasmic signaling protein expressed across a variety of immune cells, terminally differentiated plasma cells, and natural killer cells. Due to the signal potential and targetable nature of BTK, the use of BTK inhibitors (BTKis) has been proposed for the management of several diseases. Currently, the use of BTKis is under investigations for several dermatological conditions such as pemphigus, systemic lupus erythematosus, hidradenitis suppurativa, atopic dermatitis, and chronic spontaneous urticaria (CSU).

View Article and Find Full Text PDF

Mouse-derived Synaptosomes Trypsin Cleavage Assay to Characterize Synaptic Protein Sub-localization.

Bio Protoc

January 2025

Department of Structural Interactomics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.

Neurons communicate through neurotransmission at highly specialized junctions called synapses. Each neuron forms numerous synaptic connections, consisting of presynaptic and postsynaptic terminals. Upon the arrival of an action potential, neurotransmitters are released from the presynaptic site and diffuse across the synaptic cleft to bind specialized receptors at the postsynaptic terminal.

View Article and Find Full Text PDF

Arming T cells with a synthetically orthogonal IL-9 receptor (o9R) permits facile engraftment and potent anti-tumor functions. We considered whether the paucity of natural IL-9R expression could be exploited for T cell immunotherapy given that, in mice, high doses of IL-9 were well-tolerated without discernible immune modulation. Compared to o9R, T cells engineered with IL-9R exhibit superior tissue infiltration, stemness, and anti-tumor activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!