AmpC β-lactamases can hydrolyze penicillins, oxyimino-, 7-α-methoxycephalosporins and monobactams. Susceptibility to cefepime or cefpirome is little affected and is unchanged for carbapenems. Originally such genes are thought to have been mobilized to mobile genetic elements from the chromosomal ampC genes from members of Enterobacteriaceae facilitating their spread and now they can appear in bacterial lacking or poorly expressing a chromosomal ampC gene. The prevalence of infection by plasmid mediated AmpC (pAmpC) varies depending on the type of enzyme and geographical location and blaCMY-2 is the most frequently detected worldwide. Typically, pAmpC producing isolates are associated with resistance to multiple antibiotics making the selection of an effective antibiotic difficult. Phenotypic and molecular methods to detect pAmpC are described and the role of different antibiotics in the treatment of these infections is examined. Surveillance studies about the evolution of this emerging resistant mechanism are important in clinical isolates. Evaluate the in vitro susceptibility of these isolates and the clinical efficacy of other therapeutic options is required.

Download full-text PDF

Source

Publication Analysis

Top Keywords

plasmid mediated
8
mediated ampc
8
chromosomal ampc
8
ampc
5
[emergence plasmid
4
ampc β-lactamasas
4
β-lactamasas origin
4
origin detection
4
detection therapeutical
4
therapeutical options]
4

Similar Publications

Detection of O25b-ST131 clone in extended spectrum beta-lactamase-producing E. coli from urinary tract infections in Mexico.

J Infect Dev Ctries

December 2024

Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Departamento de Diagnóstico Epidemiológico. Cuernavaca, Morelos, México.

Introduction: Escherichia coli has emerged as an important pathogen in urinary tract infections (UTIs) due to the rapid acquisition of antibiotic resistance genes. This enhances the ability of E. coli to colonize and creates therapeutic challenges within the healthcare system.

View Article and Find Full Text PDF

Genetic transformation is a powerful tool in plant biotechnology. However, its application is limited to species that are well-studied and easy to transform. There is a critical need to establish transformation protocols for non-model species.

View Article and Find Full Text PDF

Objective: To establish a rapid detection method for canine using recombinase-aided amplification (RAA) technology.

Methods: The outer membrane protein 25 gene fragment (Omp25) of canis was targeted. Primers and fluorescent probes were designed and synthesized, and recombinant plasmids were constructed as standards.

View Article and Find Full Text PDF

Deciphering spread of quinolone resistance in mariculture ponds: Cross-species and cross-environment transmission of resistome.

J Hazard Mater

January 2025

SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.

Mariculture is known to harbor antibiotic resistance genes (ARGs), which can be released into marine ecosystems via oceanic farming ponds, posing a public health concern. In this study, metagenomic sequencing was used to decipher the profiles of quinolone-resistant microbiomes and the mechanisms of quinolone resistance in sediment, seawater, and fish gill samples from five mariculture ponds. Residues of both veterinary-specific (enrofloxacin and sarafloxacin) and prohibited quinolones (ofloxacin, ciprofloxacin, pefloxacin, norfloxacin, and lomefloxacin) were detected.

View Article and Find Full Text PDF

Histone H2B lysine lactylation modulates the NF-κB response via KPNA2 during CSFV infection.

Int J Biol Macromol

January 2025

College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China. Electronic address:

Histone lysine lactylation (Kla) has recently been reported to participate in various biological processes, regulating transcription, inflammation, and immune-related diseases. However, the mechanism of histone Kla in innate immunity and viral infection remains largely unknown. Here, we observed fluorescent Kla signals in all four histones (H2A, H2B, H3, and H4) in PK-15 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!