The purpose of this study is to evaluate the effect of acellular dermal matrix (ADM) as a delivery carrier of adipose-derived mesenchymal stem cells (ASCs) on bone regeneration in athymic murine calvarial bone defect. Paired-critical size defects in nude rat skull were made. The right-side defects received ASCs/ADM or only ADM, whereas the left-side defect was not treated. In 3D images, new bone formation in the ASCs/ADM group was apparent at 4 wk, but in the ADM group at 8 wk. At 4 and 8 wk, bone mineral density and tissue volume in rats that received ASCs/ADM were significantly greater than rats that received ADM and control groups. Histological examination revealed that the defect was repaired by bone in the ASCs/ADM group, whereas only minimal bone island with fibrous connection was observed in the control group. In histomorphometric analysis, the total healing score in the ASCs/ADM group at 4 wk was significantly higher than the ADM and negative control group, whereas the score of 8 wk was similar between the ASCs/ADM and ADM group. ASCs/ADM implants promote new bone formation more rapidly than ADM only or no treatment. ADM seeded with ASCs may be potentially useful as a future biomaterial option in bone implants.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.32733DOI Listing

Publication Analysis

Top Keywords

ascs/adm group
12
bone
9
acellular dermal
8
dermal matrix
8
delivery carrier
8
carrier adipose-derived
8
adipose-derived mesenchymal
8
mesenchymal stem
8
stem cells
8
bone regeneration
8

Similar Publications

Introduction: The promotion of wound healing using dermal substitutes has become increasingly widespread, but the outcomes of substitute-assisted healing remain functionally deficient. Adipose-derived stem cells (ASCs) have been investigated widely in regenerative medicine and tissue engineering, and they have the potential to enhance wound healing. In this study, we focused on investigating the effects and mechanism of ASCs combined with an acellular dermal matrix (ADM) to treat full-thickness cutaneous wounds in a murine model.

View Article and Find Full Text PDF

Targeted delivery of adipose-derived stem cells via acellular dermal matrix enhances wound repair in diabetic rats.

J Tissue Eng Regen Med

March 2015

Department of Head and Neck Surgery, Third Affiliated Hospital of Harbin Medical University, People's Republic of China; Tissue Repair and Engineering Laboratory, Harbin Medical University, People's Republic of China.

Cell-based therapeutic intervention has emerged as a new approach to accelerate wound closure. Adipose-derived stem cells (ASCs), as a fascinating cell source, have received much attention in tissue repair and regeneration. In this study we evaluated the potential of acellular dermal matrix (ADM) scaffold serving as a carrier for the delivery of ASCs and investigated its therapeutic effects on wound healing.

View Article and Find Full Text PDF

The purpose of this study is to evaluate the effect of acellular dermal matrix (ADM) as a delivery carrier of adipose-derived mesenchymal stem cells (ASCs) on bone regeneration in athymic murine calvarial bone defect. Paired-critical size defects in nude rat skull were made. The right-side defects received ASCs/ADM or only ADM, whereas the left-side defect was not treated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!