[The role of ceramides in selected brain pathologies: ischemia/hypoxia, Alzheimer disease].

Postepy Hig Med Dosw (Online)

Zakład Farmakologii Doświadczalnej Uniwersytetu Medycznego w Białymstoku.

Published: May 2012

 Ceramides, members of the sphingolipids, are produced in the central nervous system by de novo synthesis, sphingomyelin hydrolysis or the so-called salvage pathway. They are engaged in formation of lipid rafts that are essential in regulation and transduction of signals coming to the cell from the environment. Ceramides represent the major transmitters of the sphingomyelin pathway of signal transduction. They regulate proliferation, differentiation, programmed cell death and senescence. Ceramide overexpression, mainly as a result of sphingomyelin hydrolysis, is a component of brain damage caused by ischemia and early reperfusion. Their high concentrations induce mitochondria-dependent neuronal apoptosis, exacerbate the synthesis of reactive oxygen species, decrease ATP level, inhibit electron transport and release cytochrome c, and activate caspase-3. Reduced ceramide accumulation in the brain, dependent mainly on ceramide synthesized de novo, may exert an anti-apoptotic effect after pre-conditioning. The increase of ceramide content in the brain was observed in Alzheimer disease and its animal models. Enhanced ceramide concentration in this pathology is an effect of their synthesis de novo or sphingomyelin metabolism augmentation. The ceramide pathway can directly stimulate biochemical changes in the brain noted at the onset of disease: tau overphosphorylation and β-amyloid peptide accumulation. The higher concentration of ceramides in blood in the pre-clinical phase of the illness may mark early brain changes.

Download full-text PDF

Source
http://dx.doi.org/10.5604/17322693.999024DOI Listing

Publication Analysis

Top Keywords

sphingomyelin hydrolysis
8
brain
6
ceramide
6
[the role
4
role ceramides
4
ceramides selected
4
selected brain
4
brain pathologies
4
pathologies ischemia/hypoxia
4
ischemia/hypoxia alzheimer
4

Similar Publications

Lysosphingolipids in ceramide-deficient skin lipid models.

J Lipid Res

December 2024

Skin Barrier Research Group, Charles University, Faculty of Pharmacy in Hradec Králové, Hradec Králové, Czech Republic. Electronic address:

Ceramides are key components of the skin's permeability barrier. In atopic dermatitis, pathological hydrolysis of ceramide precursors - glucosylceramides and sphingomyelin - into lysosphingolipids, specifically glucosylsphingosine (GS) and sphingosine-phosphorylcholine (SPC), and free fatty acids (FFAs) has been proposed to contribute to impaired skin barrier function. This study investigated whether replacing ceramides with lysosphingolipids and FFAs in skin lipid barrier models would exacerbate barrier dysfunction.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are pivotal in intercellular communication, impacting diverse physiological and pathological processes. Current in vitro EV biogenesis studies often utilize pharmacological inhibitors, inducing off-target effects and overlooking cell-specific production nuances. Addressing these limitations, we utilized CRISPR/Cas9 to generate heterozygous full-body and conditional sphingomyelin phosphodiesterase 3 (Smpd3) knockout (KO) transgenic mice.

View Article and Find Full Text PDF

Ceramide C16 is a sphingolipid detected at high levels in several neurodegenerative disorders, including multiple sclerosis (MS). It can be generated de novo or from the hydrolysis of other sphingolipids, such as sphingomyelin or through the recycling of sphingosine, in what is known as the salvage pathway. While the myelin damage occurring in MS suggests the importance of the hydrolytic and salvage pathways, the growing interest on the importance of diet in demyelinating disorders, prompted us to investigate the involvement of de novo ceramide C16 synthesis on disease severity.

View Article and Find Full Text PDF

Mechanistic insights into the neurotoxicity of F53B: Effects on metabolic dysregulation and apoptosis of dopaminergic neurons.

J Hazard Mater

December 2024

State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China. Electronic address:

F53B (6:2 chlorinated polyfluorinated ether sulfonate), a substitute for perfluorooctane sulfonate (PFOS), is widely used as a chromium mist inhibitor in the electroplating industry. However, significant concern has arisen owing to its biological toxicity. Several studies on F53B toxicity in mammals have focused on hepatotoxicity, immunotoxicity, developmental toxicity, and reproductive toxicity, while its neurotoxic effects, especially in relation to neurodegenerative diseases such as Parkinson's disease (PD), remain unclear.

View Article and Find Full Text PDF

In this work, the heterodimeric phospholipase A, HDP-2, from viper venom was investigated for its hydrolytic activity in model myelin membranes as well as for its effects on intermembrane exchange of phospholipids (studied by phosphorescence quenching) and on phospholipid polymorphism (studied by H-NMR spectroscopy) to understand the role of sphingomyelin (SM) in the demyelination of nerve fibers. By using well-validated in vitro approaches, we show that the presence of SM in model myelin membranes leads to a significant inhibition of the hydrolytic activity of HDP-2, decreased intermembrane phospholipid exchange, and reduced phospholipid polymorphism. Using AutoDock software, we show that the NH group of the sphingosine backbone of SM binds to Tyr22(C=O) of HDP-2 via a hydrogen bond which keeps only the polar head of SM inside the HDP-2's active center and positions the sn-2 acyl ester bond away from the active center, thus making it unlikely to hydrolyze the alkyl chains at the sn-2 position.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!