We developed a highly scalable 'shotgun' DNA synthesis technology by utilizing microchip oligonucleotides, shotgun assembly and next-generation sequencing technology. A pool of microchip oligonucleotides targeting a penicillin biosynthetic gene cluster were assembled into numerous random fragments, and tagged with 20 bp degenerate barcode primer pairs. An optimal set of error-free fragments were identified by high-throughput DNA sequencing, selectively amplified using the barcode sequences, and successfully assembled into the target gene cluster.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3467036PMC
http://dx.doi.org/10.1093/nar/gks546DOI Listing

Publication Analysis

Top Keywords

microchip oligonucleotides
8
gene cluster
8
'shotgun dna
4
dna synthesis'
4
synthesis' high-throughput
4
high-throughput construction
4
construction large
4
large dna
4
dna molecules
4
molecules developed
4

Similar Publications

A method has been developed for manufacturing biological microchips on an aluminum substrate with hydrophilic cells from brush copolymers with the formation of a matrix of cells using photolithography. The surface of aluminum substrates was previously coated with a thin, durable, moderately hydrophobic layer of cross-linked polymer to prevent contact with the aluminum surface of the components used in the analysis of nucleic acids. Aluminum biochip substrates have high thermal conductivity and low heat capacity, which is important for the development of methods for multiplex PCR analysis on a chip.

View Article and Find Full Text PDF

Diabetes mellitus and its associated secondary complications have become a pressing global healthcare issue. The current integrated theranostic plan involves a glucometer-tandem pump. However, external condition-responsive insulin delivery systems utilizing rigid glucose sensors pose challenges in on-demand, long-term insulin administration.

View Article and Find Full Text PDF

Spatial-Potential-Color-Resolved Bipolar Electrode Electrochemiluminescence Biosensor Using a CuMoOx Electrocatalyst for the Simultaneous Detection and Imaging of Tetracycline and Lincomycin.

Anal Chem

May 2024

Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.

A spatial-potential-color-resolved bipolar electrode electrochemiluminescence biosensor (BPE-ECL) using a CuMoOx electrocatalyst was constructed for the simultaneous detection and imaging of tetracycline (TET) and lincomycin (LIN). HOF-101 emitted peacock blue light under positive potential scanning, and CdSe quantum dots (QDs) emitted green light under negative potential scanning. CuMoOx could catalyze the electrochemical reduction of HO to greatly increase the Faradic current of BPE and realize the ECL signal amplification.

View Article and Find Full Text PDF

A volumetric bar-chart chip (V-chip) is a microfluidic device based on distance-based quantitative measurement that visualizes analyte concentration without the need for apparatus or data processing. This typically utilizes special receptors and catalysis parts that generate oxygen, so ink can be moved inside the channels, and enables instant visual quantitation of the analyte. However, the low stability of some macromolecules, the use of expensive catalysts, and difficulty in controlling the process cause inaccurate readings, and therefore, limit further development and the use of these systems.

View Article and Find Full Text PDF

Development of reusable electrochemiluminescence sensing microchip for detection of vomitoxin.

Talanta

June 2024

Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, University of Jinan, Jinan, 250022, China; Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea. Electronic address:

In this work, a reusable DNA sensing microchip was developed for detection of vomitoxin (deoxynivalenol, DON) in sorghum using Cd-based core-shell CdSe@CdS quantum dots (QDs) as promising electrochemiluminescence (ECL) emitter. The size-adjustable aqueous phase CdSe@CdS QDs were prepared through homogeneous method, exhibiting strong cathodic ECL emission with a central wavelength of 520 nm in SO coreactant. And gold nanoparticles-modified iron cobalt cyanide hydrate (Fe-Co-Au) was introduced as an accelerator to amplify the ECL signal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!