Biologically active galactoglucomannan oligosaccharides (GGMOs) alone or in combination with IBA stimulate primary root elongation and inhibit hypocotyl elongation in mung bean (Vigna radiata (L.) Wilczek) seedlings. For a more detailed view of GGMOs effect in these processes, the present work is focused on cell growth in selected tissues (epidermis and primary cortex) and on xylem formation. The GGMOs effect on tissue level has not been studied so far. The results show that GGMOs-induced stimulation of primary root growth is mainly caused by enhancing cell elongation (and in less extent by cell production rate) in all tissues observed. Xylem elements were formed at longer distance from the root tip than in the control. In hypocotyl GGMOs reduced cell elongation. IBA in roots caused decrease of cell elongation and cell production rate and acceleration of xylem maturation; in hypocotyls IBA strongly stimulated cell elongation. Application of GGMOs with IBA resulted in increase of cell elongation, cell production rate and delay of xylem maturation in roots. In GGMOs + IBA treated hypocotyls, cell length was decreased to 50% compared to IBA. Based on our results it can be concluded that GGMOs induced elongation growth in mung bean seedlings was caused by increased cell production rate and cell elongation and was accompanied with delay of xylem maturation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2012.05.014DOI Listing

Publication Analysis

Top Keywords

cell elongation
24
cell production
16
production rate
16
cell
13
mung bean
12
xylem maturation
12
elongation
9
galactoglucomannan oligosaccharides
8
cell growth
8
primary root
8

Similar Publications

Development of Electrospinning Setup for Vascular Tissue-Engineering Application with Thick-Hierarchical Fiber Alignment.

Tissue Eng Regen Med

January 2025

College of Materials Science and Engineering, Hunan University, Changsha, 410072, People's Republic of China.

Background: Tissue engineering holds promise for vascular repair and regeneration by mimicking the extracellular matrix of blood vessels. However, achieving a functional and thick vascular wall with aligned fiber architecture by electrospinning remains a significant challenge.

Methods: A novel electrospinning setup was developed that utilizes an auxiliary electrode and a spring.

View Article and Find Full Text PDF

NKAPL facilitates transcription pause-release and bridges elongation to initiation during meiosis exit.

Nat Commun

January 2025

State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.

Transcription elongation, especially RNA polymerase II (Pol II) pause-release, is less studied than transcription initiation in regulating gene expression during meiosis. It is also unclear how transcription elongation interplays with transcription initiation. Here, we show that depletion of NKAPL, a testis-specific protein distantly related to RNA splicing factors, causes male infertility in mice by blocking the meiotic exit and downregulating haploid genes.

View Article and Find Full Text PDF

The elongation of tissues and organs is important for proper morphogenesis in animal development. In Drosophila ovaries, the elongation of egg chambers involves aligned Collagen IV fiber-like structures, a gradient of extracellular matrix stiffness and actin-based protrusion-driven collective cell migration, leading to the rotation of the egg chamber. Egg chamber elongation and rotation depend on the atypical cadherin Fat2.

View Article and Find Full Text PDF

The SWItch/Sucrose Non-Fermenting (SWI/SNF) complexes are evolutionarily conserved, ATP-dependent chromatin remodelers crucial for multiple nuclear functions in eukaryotes. Recently, plant BCL-DOMAIN HOMOLOG (BDH) proteins were identified as shared subunits of all plant SWI/SNF complexes, significantly impacting chromatin accessibility and various developmental processes in Arabidopsis. In this study, we performed a comprehensive characterization of mutants, revealing the role of BDH in hypocotyl cell elongation.

View Article and Find Full Text PDF

Deciphering transcription activity of mammalian early embryos unveils on/off of zygotic genome activation by protein translation/degradation.

Cell Rep

January 2025

Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China; NHC Key Laboratory of Birth Defect Prevention, Zhengzhou, Henan 451163, P.R. China. Electronic address:

Quantification of transcription activities in mammalian preimplantation embryos is challenging due to a huge amount of maternally stored transcripts and paucity of research materials. Here, we investigate genome-wide transcription activities of mouse and human preimplantation embryos by quantifying elongating RNA polymerase II. Two transcriptional waves are identified in early mouse embryos, with summits at the 2-cell and 8-cell stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!