The presence of very reactive C1-C4 molecules adversely affects the quality bio-oils produced from the pyrolysis of lignocellulosic materials. In this paper a scheme to produce lipids with Cryptococcus curvatus from the carboxylic acids in the pyrolytic aqueous phase collected in fractional condensers is proposed. The capacities of three oleaginous yeasts C. curvatus, Rhodotorula glutinis, Lipomyces starkeyi to ferment acetate, formate, hydroxylacat-aldehyde, phenol and acetol were investigated. While acetate could be a good carbon source for lipid production, formate provides additional energy and contributes to yeast growth and lipid production as auxiliary energy resource. Acetol could slightly support yeast growth, but it inhibits lipid accumulation. Hydroxyacetaldehyde and phenols showed high yeast growth and lipid accumulation inhibition. A pyrolytic aqueous phase with 20 g/L acetate was fermented with C. curvatus, after neutralization and detoxification to produce 6.9 g/L dry biomass and 2.2 g/L lipid.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2012.05.010DOI Listing

Publication Analysis

Top Keywords

pyrolytic aqueous
12
lipid production
12
yeast growth
12
carboxylic acids
8
acids pyrolytic
8
aqueous phase
8
growth lipid
8
lipid accumulation
8
lipid
6
yeast
4

Similar Publications

Although the use of biochar as an adsorbent for the removal of various pollutants from wastewater is well established, the use of biochar/modified biochar for the scavenging of antibiotics from aqueous media in the Fenton-like system receives less attention. The highest kasugamycin (KSM) adsorption capacity (5.0 mg g) was obtained from the pristine biochar at the lowest initial pH of 3 in Fenton-like system.

View Article and Find Full Text PDF

In the present study, we deposited buffer solutions containing hydrophobic (GA) fibrils onto highly oriented pyrolytic graphite (HOPG) and imaged the surfaces through atomic force microscopy (AFM). Within 3 h of applying ambient (nondegassed) buffers, we observed the formation of two-dimensional stripe-like domains on the HOPG surfaces surrounding the (GA) fibrils. However, these stripe domains did not form under degassed buffers.

View Article and Find Full Text PDF

Alkaline-Acidic Sodium Chlorite Pretreatment of Bamboo Powder for Preparation of Excellent Mechanical, Transparent, and Biodegradable Films.

Polymers (Basel)

November 2024

Key Laboratory of Advanced Functional Materials, Institute of Advanced Energy Materials and Devices, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China.

Bamboo is widely distributed around the world as an excellent renewable resource. However, the structural and morphological changes in the bamboo samples in extracting bamboo cellulose fiber using alkaline-acidic sodium chlorite are unclear, and the potential for preparation of cellulose packaging films is yet to be explored. In this paper, the changes in micro-morphology, chemical structure, and pyrolytic behavior of moso bamboo powder during alkaline and acidic sodium chlorite pretreatment were intensively investigated.

View Article and Find Full Text PDF

Green synthesized nanoscale zero-valent iron impregnated tea residue biochar efficiently captures metal(loid)s for sustainable water remediation.

J Environ Manage

January 2025

Korea Biochar Research Center, Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Korea.

Pristine or modified nanoscale zero-valent iron (nZVI) synthesized though conventional chemical reduction have been widely recommended for remediating metal(loid)-contaminated water. However, their eco-friendliness is often challenged with the concomitant bio-toxicity and secondary environmental risks. Alternatively, this study utilized waste tea leaves extract and remaining residue as the reducing agent and pyrolytic matrix to innovatively fabricate a green synthesized nZVI impregnated tea residue biochar (G-nZVI/TB).

View Article and Find Full Text PDF

Assessment of cerium adsorption potential of phosphoric acid activated biochar in aqueous system: Modelling and mechanistic insights.

Environ Res

January 2025

Biochemical and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India. Electronic address:

Article Synopsis
  • Cerium pollution from industrial waste poses significant environmental risks, necessitating effective treatment methods for contaminated water.
  • This study investigates the use of phosphoric acid-activated biochar (PPMB), derived from palmyra palm male flower, as an efficient adsorbent for removing cerium from water, optimizing key parameters for adsorption efficiency.
  • Findings indicate that PPMB’s superior adsorption capacity (141.35 mg/g) is attributed to its unique surface properties and mechanisms, making it a promising and sustainable solution for cerium pollution remediation.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!