Mutations in the Survival of Motor Neuron (SMN) gene underlie the development of spinal muscular atrophy (SMA), which currently represents the leading genetic cause of mortality in infants and toddlers. SMA is characterized by degeneration of spinal cord motor neurons and muscle atrophy. Although SMA is often considered to be a motor neuron disease, accumulating evidence suggests that muscle cells themselves may be affected by low levels of SMN. Here, we examine satellite cells, tissue-resident stem cells that play an essential role in the growth and repair of skeletal muscle, isolated from a severe SMA mouse model (Smn(-/-); SMN2(+/+)). We found similar numbers of satellite cells in the muscles of SMA and wild-type (Smn(+/+); SMN2(+/+)) mice at postnatal day 2 (P2), and, when isolated from skeletal muscle using cell surface marker expression, these cells showed comparable survival and proliferative potential. However, SMA satellite cells differentiate abnormally, revealed by the premature expression of muscle differentiation markers, and, especially, by a reduced efficiency in forming myotubes. These phenotypes suggest a critical role of SMN protein in the intrinsic regulation of muscle differentiation and suggest that abnormal muscle development contributes to the manifestation of SMA symptoms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3851302PMC
http://dx.doi.org/10.1016/j.ydbio.2012.05.037DOI Listing

Publication Analysis

Top Keywords

satellite cells
16
skeletal muscle
12
motor neuron
12
muscle
8
low levels
8
survival motor
8
atrophy sma
8
muscle differentiation
8
cells
7
sma
7

Similar Publications

Introduction: Skeletal muscle satellite cells (MuSCs or stem cells) play a crucial role in muscle development, maintenance, and regeneration, supporting both hypertrophy and regenerative myogenesis. Syndecans (SDCs) act as communication bridges within the muscle microenvironment, regulating interactions with extracellular matrix components and contributing significantly to tissue repair and inflammation. Specifically, syndecan-4 (SDC4) is involved in muscle regeneration at multiple stages.

View Article and Find Full Text PDF

Unlabelled: RNA-driven protein aggregation leads to cellular dysregulation by sequestering regulatory proteins, disrupting normal cellular processes, and contributing to the development of diseases and tumorigenesis. Here, we show that double homeobox 4 (DUX4), an early embryonic transcription factor and causative gene of facioscapulohumeral muscular dystrophy (FSHD), induces the accumulation of stable intranuclear RNAs, including nucleolar-associated RNA and human satellite II (HSATII) repeat RNA. Stable intranuclear RNAs drive protein aggregation in DUX4-expressing muscle cells.

View Article and Find Full Text PDF

Noggin Combined With Human Dental Pulp Stem Cells to Promote Skeletal Muscle Regeneration.

Stem Cells Int

December 2024

Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital and School of Stomatology, Fudan University, Shanghai, China.

A proper source of stem cells is key to muscle injury repair. Dental pulp stem cells (DPSCs) are an ideal source for the treatment of muscle injuries due to their high proliferative and differentiation capacities. However, the current myogenic induction efficiency of human DPSCs hinders their use in muscle regeneration due to the unknown induction mechanism.

View Article and Find Full Text PDF

is one of the three most frequently mutated genes in age-related clonal hematopoiesis (CH), alongside and (. CH can progress to myeloid malignancies including chronic monomyelocytic leukemia (CMML) and is also strongly associated with inflammatory cardiovascular disease and all-cause mortality in humans. DNMT3A and TET2 regulate DNA methylation and demethylation pathways, respectively, and loss-of-function mutations in these genes reduce DNA methylation in heterochromatin, allowing derepression of silenced elements in heterochromatin.

View Article and Find Full Text PDF

The current research was conducted to synthesize Parietaria alsinifolia-mediated iron oxide nanoparticles (P.A@FeONPs) using the green and eco-friendly protocol. The biosynthesized P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!