Here we provide evidence that WNT-3a modulates platelet function by regulating the activity of four key GTPase proteins: Rap1, Cdc42, Rac1 and RhoA. We observe WNT-3a to differentially regulate small GTPase activity in platelets, promoting the GDP-bound form of Rap1b to inhibit integrin-α(IIb)β(3) adhesion, while concomitantly increasing Cdc42 and Rac1-GTP levels thereby disrupting normal platelet spreading. We demonstrate that Daam-1 interacts with Dishevelled upon platelet activation, which correlates with increased RhoA-GTP levels. Upon pre-treatment with WNT-3a, this complex disassociates, concurrent with a reduction in RhoA-GTP. Together these data implicate WNT-3a as a novel upstream regulator of small GTPase activity in platelets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2012.05.060 | DOI Listing |
Vet Microbiol
December 2024
Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510462, China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China. Electronic address:
Since its emergence, porcine reproductive and respiratory syndrome (PRRS) has caused enormous economic losses to the global swine industry. The pathogenesis of PRRS remains under investigation. The porcine reproductive and respiratory syndrome virus (PRRSV) causes reproductive disorders in pigs and respiratory in piglets, which is a 15 kb RNA virus that encodes 16 viral proteins, most of which exhibit multiple functions during the virus lifecycle.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Western Ontario, London, ON, Canada.
Background: Previously, we identified macropinocytosis as a novel mechanism for direct and rapid trafficking of cell surface APP to lysosomes, bypassing early and late endosomes. This process depends on the activity of Arf6 and several Rho-GTPases, and inhibition of macropinocytosis reduces amyloid-beta (Aβ) production. Macropinocytosis is relatively unstudied in neurons and neuronal cells.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Clearwater, FL, USA.
Background: Progressive Supranuclear Palsy (PSP) and Corticobasal Degeneration (CBD) are characterized by abnormal aggregation and deposition of tau proteins in neurons and supporting brain cells. The underlying pathophysiology of these 4R-tauopathy disorders remains unclear. In Alzheimer's disease (AD), a related tauopathy, vesicle trafficking deficits, and impaired protein clearance are observed early in disease progression.
View Article and Find Full Text PDFCNS Neurosci Ther
January 2025
Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
Aims: Stroke is a major public health concern leading to high rates of death and disability worldwide, unfortunately with no effective treatment available for stroke recovery during the repair phase.
Methods: Photothrombotic stroke was induced in mice. Adeno-associated viruses (AAV) were microinjected into the peri-infarct cortex immediately after photothrombotic stroke.
BMC Med Genomics
January 2025
Department of Biology, Faculty of Art and Science, Gaziantep University, Gaziantep, 27310, Turkey.
Background: The study aimed to was to investigate the relationship between miR-2861, miR-5011-5p, and colorectal carcinogenesis.
Method: In the present study, it was isolated RNA from both the tumor and non-tumor tissue of a total of 80 CRC patients and after synthesizing the cDNA, it was performed qRT-PCR to determine the expression levels of miR‑2861 and miR‑5011-5p. In addition, it was predicted that dysregulated miRNAs targets, pathways and functional gene annotations that may be important in colorectal carcinogenesis using KEGG pathway and GO analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!