Prostaglandin D(2) (PGD(2)) is a lipid mediator synthesized from arachidonic acid that directly activates two specific receptors, the D-type prostanoid (DP) receptor and chemoattractant receptor homologous molecule expressed on T-helper type 2 cells (CRTH2). PGD(2) can affect bone metabolism by influencing both osteoblast and osteoclast (OC) functions, both cells involved in bone remodeling and in in vivo fracture repair as well. The objective of the present study was to determine the effects of PGD(2), acting through its two specific receptors, on human OC apoptosis. Human OCs were differentiated in vitro from peripheral blood mononuclear cells in the presence of receptor activator for nuclear factor κB ligand (RANKL) and macrophage-colony stimulating factor (M-CSF), and treated with PGD(2), its specific agonists and antagonists. Treatment with PGD(2) for 24hours in the presence of naproxen (10μM) to inhibit endogenous prostaglandin production increased the percentage of apoptotic OCs in a dose-dependent manner, as did the specific CRTH2 agonist compound DK-PGD(2) but not the DP agonist compound BW 245C. In the absence of naproxen, the CRTH2 antagonist compound CAY 10471 reduced OC apoptosis rate but the DP antagonist BW A868C had no effect. The induction of PGD(2)-CRTH2 dependent apoptosis was associated with the activation of caspase-9, but not caspase-8, leading to caspase-3 cleavage. These data show that PGD(2) induces human OC apoptosis through activation of CRTH2 and the apoptosis intrinsic pathway.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2012.06.003DOI Listing

Publication Analysis

Top Keywords

apoptosis human
8
specific receptors
8
human apoptosis
8
agonist compound
8
apoptosis
7
pgd2
6
crth2
5
prostaglandin induces
4
induces apoptosis
4
human
4

Similar Publications

Increasing demand for adeno-associated virus (AAV) used in gene therapy highlights the need to enhance AAV production. When intracellular AAV2 and extracellular AAV9 were produced in HEK293T cells using the triple transfection method, apoptosis occurred during the AAV production. To mitigate apoptosis induced by AAV production, the pro-apoptotic BAX/BAK1 genes were knocked out in HEK293T cells.

View Article and Find Full Text PDF

Background: Histone H2B is highly expressed in many types of cancers and is involved in cancer development. H2B clustered histone 9 (H2BC9), a member of the H2B family, plays critical roles in gene expression regulation, chromosome structure, DNA repair stability, and cell cycle regulation. However, the diagnostic and prognostic value of H2BC9 in head and neck squamous cell carcinoma (HNSCC) remains unclear.

View Article and Find Full Text PDF

CASC8 activates the pentose phosphate pathway to inhibit disulfidptosis in pancreatic ductal adenocarcinoma though the c-Myc-GLUT1 axis.

J Exp Clin Cancer Res

January 2025

Department of Hepato-Biliary-Pancreatic Surgery, General Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, PR China.

Purpose: Glucose starvation induces the accumulation of disulfides and F-actin collapse in cells with high expression of SLC7A11, a phenomenon termed disulfidptosis. This study aimed to confirm the existence of disulfidptosis in pancreatic ductal adenocarcinoma (PDAC) and elucidate the role of Cancer Susceptibility 8 (CASC8) in this process.

Methods: The existence of disulfidptosis in PDAC was assessed using flow cytometry and F-actin staining.

View Article and Find Full Text PDF

Genomic instability is the main cause of abnormal embryo development and abortion. NLRP7 dysfunctions affect embryonic development and lead to Hydatidiform Moles, but the underlying mechanisms remain largely elusive. Here, we show that NLRP7 knockout affects the genetic stability, resulting in increased DNA damage in both human embryonic stem cells and blastoids, making embryonic cells in blastoids more susceptible to apoptosis.

View Article and Find Full Text PDF

Human carbonic anhydrase IX (CAIX) plays a key role in maintaining pH homeostasis of malignant neoplasms, thus creating a favorable microenvironment for the growth, invasion, and metastasis of tumor cells. Recent studies have established that inhibition of CAIX expressed on the surface of tumor cells significantly increases the efficacy of classical chemotherapeutic agents and makes it possible to suppress the resistance of tumor cells to chemotherapy, as well as to increase their sensitivity to drugs (in particular, to reduce the required dose of cytostatic agents). In this work, we studied the ability of new CAIX inhibitors based on substituted 1,2,4-oxadiazole-containing primary aromatic sulfonamides, to potentiate the cytostatic effect of gefitinib (selective inhibitor of epidermal growth factor receptor tyrosine kinase domain) under hypoxic conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!