Overcoming the cellular type I interferon (IFN) host defense response is critical for a virus to ensure successful infection. Investigating the effects of human adenovirus (HAdV) infection on global cellular histone posttranslational modification (hPTM), we discovered that virus infection-induced activation of IFN signaling triggers a global increase in the monoubiquitination of histone 2B (H2B) at lysine 120, which is a mark for transcriptionally active chromatin. This hPTM, catalyzed by the hBre1/RNF20 complex, is necessary for activation of the cellular IFN-stimulated gene (ISG) expression program in response to viruses. To establish effective infection, the HAdV E1A protein binds to and dissociates the hBre1 complex to block IFN-induced H2B monoubiquitination and associated ISG expression. Together, these data uncover a key role for H2B monoubiquitination in the type I IFN response and a viral mechanism of antagonizing this hPTM to evade the IFN response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chom.2012.05.005 | DOI Listing |
Biol Reprod
January 2025
Laboratory of Animal Genetics and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo 060-8589, Japan.
Unlike differentiated somatic cells, which possess elongated mitochondria, undifferentiated cells, such as those of preimplantation embryos, possess round, immature mitochondria. Mitochondrial morphology changes dynamically during cell differentiation in a process called mitochondrial maturation. The significance of the alignment between cell differentiation and mitochondrial maturity in preimplantation development remains unclear.
View Article and Find Full Text PDFiScience
January 2025
Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
ETV2/ER71, an ETS (E-twenty six) transcription factor, is critical for hematopoiesis and vascular development. However, research about the molecular mechanisms behind ETV2-mediated gene transcription is limited. Herein, we demonstrate that ETV2 and KDM4A, an H3K9 demethylase, regulate hematopoietic and endothelial genes.
View Article and Find Full Text PDFiScience
January 2025
Section of Cell Biology and Functional Genomics, Department of Medicine, Endocrinology and Metabolism, Imperial College London, London, UK.
Long non-coding RNAs (lncRNAs) are emerging as crucial regulators of beta cell function. Here, we show that an lncRNA-transcribed antisense to Pax6, annotated as Pax6os1/PAX6-AS1, was upregulated by high glucose concentrations in human as well as murine beta cell lines and islets. Elevated expression was also observed in islets from mice on a high-fat diet and patients with type 2 diabetes.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin Road II, Shanghai, 200025, China.
Receptor activator of nuclear factor kappa-B ligand (RANKL) initiates a complex signaling cascade that is crucial for inducing osteoclast differentiation and activation. RANKL-induced signaling has been analyzed in detail, and the involvement of TNF receptor-associated factor 6 (TRAF6), calmodulin-dependent protein kinase (CaMK), NF-κB, mitogen-activated protein kinase (MAPK), activator protein-1 (AP-1), and molecules that contain an immunoreceptor tyrosine-based activation motif (ITAM) has been reported. However, the precise molecular steps that regulate RANKL signaling remain largely unknown.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Hepatology Laboratory, Solid Tumors Program, CIMA, CCUN, University of Navarra, Pamplona, Spain.
Background: Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited treatment options and a poor prognosis. The critical role of epigenetic alterations such as changes in DNA methylation, histones modifications, and chromatin remodeling, in pancreatic tumors progression is becoming increasingly recognized. Moreover, in PDAC these aberrant epigenetic mechanisms can also limit therapy efficacy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!