Mucopolysaccharidosis type II (MPS II), or Hunter syndrome, is a lysosomal storage disorder caused by a deficiency of iduronate-2-sulfatase (IDS) and is characterized by the accumulation of glycosaminoglycans (GAGs). MPS II has been treated by hematopoietic stem cell therapy (HSCT)/enzyme replacement therapy (ERT), but its effectiveness in the central nervous system (CNS) is limited because of poor enzyme uptake across the blood-brain barrier (BBB). To increase the efficacy of ERT in the brain, we tested an intraventricular ERT procedure consisting of repeated administrations of IDS (20 μg/mouse/3 weeks) in IDS-knockout, MPS II model mice. The IDS enzyme activity and the accumulation of total GAGs were measured in mouse brains. The IDS activity was significantly increased, and the accumulation of total GAGs was decreased in the MPS II mouse brains treated with multiple administrations of IDS via intraventricular ERT. Additionally, a high level of IDS enzyme activity was appreciated in other MPS II mouse tissues, such as the liver, spleen, testis and others. A Y-maze was used to test learning and memory after repeated intraventricular ERT with IDS. The IDS-treated mouse groups recovered the capacity for short-term memory and activity. Although large and small vacuoles were found at the margin of the cerebellar Purkinje cells in the disease-control mice, these vacuoles disappeared upon treated with IDS. Loss of vacuoles was also observed in other tissues (liver, kidney and testis). These results demonstrate the possible efficacy of an ERT procedure with intraventricular administration of IDS for the treatment of MPS II.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ymgme.2012.05.005 | DOI Listing |
J Bone Miner Metab
January 2025
Medical Faculty, Department of Pediatric Metabolism and Nutrition, Ege University, Izmir, 35040, Turkey.
Introduction: Gaucher disease (GD) is a lysosomal storage disorder causing systemic and skeletal complications. This study evaluates bone health in adult GD type 1 patients, focusing on skeletal complications, bone mineral density (BMD), and biochemical markers.
Material And Methods: A cohort of adult GD type 1 patients followed up at Ege University Pediatric Metabolism Department were retrospectively examined.
Fluids Barriers CNS
January 2025
Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada.
Background: Iduronate-2-sulfatase (IDS) deficiency (MPS II; Hunter syndrome) is a disorder that exhibits peripheral and CNS pathology. The blood brain barrier (BBB) prevents systemic enzyme replacement therapy (ERT) from alleviating CNS pathology. We aimed to enable brain delivery of systemic ERT by using molecular BBB-Trojans targeting endothelial transcytosis receptors.
View Article and Find Full Text PDFMol Genet Metab Rep
March 2025
Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
Background: The current standard of care for infantile-onset Pompe disease (IOPD), a severe form of acid α-glucosidase enzyme activity deficiency is: (1) detection by newborn screening, (2) early initiation of intravenous enzyme replacement therapy (ERT) using recombinant human acid alpha-glucosidase (rhGAA), with higher doses of rhGAA increasingly used to improve clinical outcomes, and (3) immune tolerization induction (ITI) using to prevent anti-rhGAA antibody formation, with methotrexate (MTX), rituximab, and IVIG used for patients who are cross-reactive immunologic material negative (CRIM-) and monotherapy with MTX used in patients who are cross-reactive immunologic material positive (CRIM+).
Objectives/methods: A pilot study evaluates a dose-intensive therapy (DIT) using high-dose ERT (40 mg/kg/week) and more frequent exposure to ERT (i.e.
Biomedicines
November 2024
Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Duisburg-Essen, 45122 Essen, Germany.
: X-linked dystrophinopathies are a group of neuromuscular diseases caused by pathogenic variants in the gene (MIM *300377). Duchenne muscular dystrophy (DMD; MIM #310200) is the most common inherited muscular dystrophy. : We screened datasets of 403 male, genetically confirmed X-linked dystrophinopathy patients and identified 13 pathogenic variants of the gene that have not been described in the literature thus far.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
Unidad de Investigación Epidemiológica y en Servicios de Salud, Centro Médico Nacional de Occidente Órgano de Operación Administrativa Desconcentrada Jalisco, Instituto Mexicano del Seguro Social, Guadalajara 44329, Jalisco, Mexico.
Background: Gaucher disease (GD) is a rare autosomal recessive disorder caused by mutations in the GBA1 gene that lead to a deficiency in the glucocerebrosidase gene. This deficiency results in the accumulation of glucocerebrosides in macrophages, primarily affecting the liver, spleen, and bone marrow. Focusing on the Mexican population, this study aims to review GD's epidemiology, clinical manifestations, and treatment options to enhance early diagnosis and optimize treatment outcomes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!