Neamphamide B, new cyclic depsipeptide, as an anti-dormant mycobacterial substance from a Japanese marine sponge of Neamphius sp.

Bioorg Med Chem Lett

Graduate School of Pharmaceutical Sciences, Osaka University, Yamada-oka 1-6, Suita, Osaka 565-0871, Japan.

Published: July 2012

A new cyclic depsipeptide, designated neamphamide B (1), was isolated from a marine sponge of Neamphius sp. collected at Okinawa, Japan in 1993 as an anti-mycobacterial substance against active and dormant bacilli. The planar structure of neamphamide B (1) was determined on the basis of spectroscopic analysis, and stereostructure of amino acid was deduced by chromatographic comparison of the acid hydrolysate of 1 with appropriate amino acid standards after derivatizing with FDAA or GITC. Neamphamide B (1) showed potent anti-mycobacterial activity against Mycobacterium smegmatis under standard aerobic growth conditions as well as dormancy-inducing hypoxic conditions with MIC of 1.56 μg/mL. Neamphamide B (1) was also effective to Mycobacterium bovis BCG with MIC in the ranging of 6.25-12.5 μg/mL.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2012.05.071DOI Listing

Publication Analysis

Top Keywords

cyclic depsipeptide
8
marine sponge
8
sponge neamphius
8
amino acid
8
neamphamide
5
neamphamide cyclic
4
depsipeptide anti-dormant
4
anti-dormant mycobacterial
4
mycobacterial substance
4
substance japanese
4

Similar Publications

With rising concerns about antimicrobial resistance, the identification of new lead compounds to target multidrug-resistant bacteria is essential. This study employed a fast miniaturized screening to simultaneously cultivate and evaluate about 300 marine strains for biosurfactant and antibacterial activities, leading to the selection of the deep-sea BCP32. The integration of tandem mass spectrometry molecular networking and bioassay-guided fractionation unveiled this strain as a prolific factory of surfactins and nobilamides.

View Article and Find Full Text PDF

Potential of emodepside for vector-borne disease control.

Malar J

January 2025

Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.

Background: Emodepside is an anthelmintic used in veterinary medicine that is currently under investigation in human clinical trials for the treatment of soil-transmitted helminths and possibly Onchocerca volvulus. Emodepside targets the calcium-activated voltage-gated potassium slowpoke 1 (SLO-1) channels of presynaptic nerves of pharynx and body wall muscle cells of nematodes leading to paralysis, reduced locomotion and egg laying, starvation, and death. Emodepside also has activity against Drosophila melanogaster SLO-1 channels.

View Article and Find Full Text PDF

Discovery of potent antiosteoporotic cyclic depsipeptides with an unusual nitrile hydroxy acid from Microascus croci.

Bioorg Chem

February 2025

National Center for Screening New Microbial Drugs, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China. Electronic address:

Two cyclic octadepsipeptides, microascusins A and B (1 and 2), were identified from the marine sponge-associated Microascus croci IMB19-064 co-cultivated with Escherichia coli. Their structures and conformations in solution were determined by comprehensive spectroscopic data analysis. The absolute configurations of amino and hydroxy acids were determined by the advanced Marfey's and O-Marfey's methods, respectively, as well as chiral-phase HPLC analysis.

View Article and Find Full Text PDF

Didemnins, a class of cyclic depsipeptides derived from marine organisms exhibit notable anticancer properties. Among them, Didemnin B has been extensively researched for its strong antitumor activity and progression to clinical trials. Nonetheless, its clinical application has been impeded by challenges like poor bioavailability and dose-limiting toxicity.

View Article and Find Full Text PDF

Several antibiotic candidates are in development against Gram-positive bacterial pathogens, but their long-term utility is unclear. To investigate this issue, we studied the laboratory evolution of resistance to antibiotics that have not yet reached the market. We found that, with the exception of compound SCH79797, antibiotic resistance generally readily evolves in .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!