Identification of small molecule inhibitors against SecA of Candidatus Liberibacter asiaticus by structure based design.

Eur J Med Chem

Citrus Research & Education Center, Department of Microbiology and Cell Science, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA.

Published: August 2012

Huanglongbing is the most devastating disease of citrus caused by Candidatus Liberibacter asiaticus (Las). In the present study, we report the discovery of novel small molecule inhibitors against SecA ATPase of Las by using structure based design methods. We built the homology model of SecA protein structure of Las based on the SecA of Escherichia coli. The model was used for in-silico screening of commercially available compounds from ZINC database. Using the glide flexible molecular docking method, twenty structures were chosen for in vitro studies. Five compounds were found to inhibit the ATPase activity of SecA of Las at nano molar concentrations and showed antimicrobial activities against Agrobacterium tumefaciens with MBC ranging from 128 to 256 μg/mL. These compounds appear to be suitable as lead compounds for further development of antimicrobial compounds against Las.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2012.05.035DOI Listing

Publication Analysis

Top Keywords

small molecule
8
molecule inhibitors
8
inhibitors seca
8
candidatus liberibacter
8
liberibacter asiaticus
8
structure based
8
based design
8
seca
5
las
5
compounds
5

Similar Publications

The recent development of modular universal chimeric antigen receptor (CAR) T-cell platforms that use bifunctional adaptor intermediates to redirect engineered T-cell effector function has greatly expanded the capabilities of adoptive T-cell therapy, enabling safer and more comprehensive cancer treatment. However, universal CAR receptor systems rely on unstable transient recognition of tag-coupled intermediates for T-cell activation, and the array of targeting intermediates has been limited to antibodies and small molecules. Addressing these shortcomings, we engineered universal CAR T-cell receptors that can be covalently modified with synthetic biomaterials by accelerated SpyCatcher003-SpyTag003 chemistry for cancer-cell targeting.

View Article and Find Full Text PDF

A Fast-Pass, Desorption Electrospray Ionization Mass Spectrometry Strategy for Untargeted Metabolic Phenotyping.

J Am Soc Mass Spectrom

January 2025

Department of Chemistry, Center for Innovative Technology, Vanderbilt University, Nashville, Tennessee 37235, United States.

Desorption electrospray ionization mass spectrometry imaging (DESI-MSI) provides direct analytical readouts of small molecules that can be used to characterize the metabolic phenotypes of genetically engineered bacteria. In an effort to accelerate the time frame associated with the screening of mutant libraries, we have developed a high-throughput DESI-MSI analytical workflow implementing a single raster line-scan strategy that facilitates the collection of location-resolved molecular information from engineered strains on a subminute time scale. Evaluation of this "Fast-Pass" DESI-MSI phenotyping workflow on analytical standards demonstrated the capability of acquiring full metabolic profiling information with a throughput of ∼40 s per sample.

View Article and Find Full Text PDF

Dysregulated eIF4E-dependent translation is a central driver of tumorigenesis and therapy resistance. eIF4E binding proteins (4E-BP1/2/3) are major negative regulators of eIF4E-dependent translation that are inactivated in tumors through inhibitory phosphorylation or downregulation. Previous studies have linked PP2A phosphatase(s) to activation of 4E-BP1.

View Article and Find Full Text PDF

The aging population necessitates a critical need for medical devices, where polymers-based surface lubrication coating is essential for optimal functionality. In fact, lubrication and mechanical requirements vary depending on the service environment of different medical devices. Until now, key mean is still blank for general preparation of hydrophilic polymers-based lubrication coatings with on-demand mechanics and lubricity.

View Article and Find Full Text PDF

The maturation of the RNA cap involving guanosine N-7 methylation, catalyzed by the HsRNMT (RNA guanine-7 methyltransferase)-RAM (RNA guanine-N7 methyltransferase activating subunit) complex, is currently under investigation as a novel strategy to combat PIK3CA mutant breast cancer. However, the development of effective drugs is hindered by a limited understanding of the enzyme's mechanism and a lack of small molecule inhibitors. Following the elucidation of the HsRNMT-RAM molecular mechanism, we report the biophysical characterization of two small molecule hits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!