Introduction: The objective of this study was to investigate correlations between pulp oxygenation rates (%SpO(2)) and clinical diagnoses of reversible pulpitis (RP), irreversible pulpitis (IP), or pulp necrosis (PN).

Methods: Sixty patients who presented with a tooth with endodontic pathology were grouped according to a clinical diagnosis of either RP (n = 20), IP (n = 20), or PN (n = 20). The clinical diagnosis was based on the patient's dental history, periapical radiographs, clinical inspection, and percussion and thermal sensitivity testing. Pulse oximetry (PO) was used to determine pulp oxygenation rates. For every patient, one additional endodontically treated tooth (negative control [NC], n = 60) and one additional healthy tooth with healthy pulp status (positive control [PC], n = 60) were evaluated. Analysis of variance, the Tukey HSD test, and the Student's t test were used for statistical analysis.

Results: The mean %SpO(2) levels were as follows: RP: 87.4% (standard deviation [SD] ±2.46), IP: 83.1% (SD ±2.29), PN: 74.6% (SD ±1.96), PC: 92.2% (SD ±1.84), and NC: 0% (SD ±0.0). There were statistically significant differences between RP, IP, and PN compared with NC and PC and between RP, IP, and PN (all P ≤ .01).

Conclusions: The evaluation of pulp oxygenation rates by PO may be a useful tool to determine the different inflammatory stages of the pulp to aid in endodontic diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.joen.2012.03.027DOI Listing

Publication Analysis

Top Keywords

pulp oxygenation
16
oxygenation rates
16
clinical diagnosis
12
pulp
8
pulse oximetry
8
clinical
5
diagnosis pulp
4
pulp inflammation
4
inflammation based
4
based pulp
4

Similar Publications

Significantly Enhanced Acidic Oxygen Evolution Reaction Performance of RuO Nanoparticles by Introducing Oxygen Vacancy with Polytetrafluoroethylene.

Polymers (Basel)

December 2024

Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education/Shandong Province, State Key Laboratory of Biobased Material and Green Papermaking, Faculty of Light Industry, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.

The supported RuO catalysts are known for their synergistic and interfacial effects, which significantly enhance both catalytic activity and stability. However, polymer-supported RuO catalysts have received limited attention due to challenges associated with poor conductivity. In this study, we successfully synthesized the RuO-polytetrafluoroethylene (PTFE) catalyst via a facile annealing process.

View Article and Find Full Text PDF

Dual heteroatom-doped porous biochar from chitosan/lignosulfonate gels for enhanced removal of tetracycline by persulfate activation: Performance and mechanism.

Int J Biol Macromol

January 2025

School of Materials and Chemistry, Anhui Agricultural University, Hefei, Anhui 230036, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing, Zhejiang 312000, China. Electronic address:

Rational design of carbon material structures is essential for enhancing the performance of persulfate-based advanced oxidation processes (PS-AOPs) in water purification. In this study, a self-doping and self-templating strategy was devised to produce N, S co-doped biochar catalysts through pre-cryocrushing and carbonization procedures employing chitosan (N-source) and lignosulfonate (S-source) derived from biomass waste. The as-synthesized materials exhibited excellent performance in removing tetracycline (TC) through a synergistic process of adsorption and catalytic activation.

View Article and Find Full Text PDF

Herein, a biochar-supported zero-valent iron (ZVI) nanosheet catalyst (Fe@BC) for the activation of persulfate to degrade ciprofloxacin (CIP) was prepared using industrial kraft lignin and Fenton sludge as carbon and iron sources, respectively. Fe@BC showed considerably better CIP degradation efficiency (96.9% at 20 mg·L) than traditional catalysts.

View Article and Find Full Text PDF

Fates of bioactive compounds and antioxidant activities of red pitaya pulp upon in vitro gastrointestinal digestion.

Food Res Int

January 2025

Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Agricultural Products Processing, Guangdong 510610, China. Electronic address:

Health benefit effects of bioactive compounds depend on their bioavailabilities, which could vary according to factors including food matrix and digestion environment. To understand the "bioaccessible" health benefit of red pitay pulp, the INFOGEST static in vitro simulation of gastrointestinal (GI) digestion model and targeted metabolomics method were applied to unravel the fates of bioactive compounds in the whole food of red pitaya pulp during GI digestion. The antioxidant activity as one of the health benefit indices was also assessed to compare the changes in bioactive properties of red pitaya pulp.

View Article and Find Full Text PDF

Design and fabrication of xylan-graft-poly (methyl methacrylate) thermoplastic via SARA ATRP.

Int J Biol Macromol

January 2025

Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Beijing 100083, China. Electronic address:

Due to the emphasis on the environmental and health issues caused by petroleum-based plastics, renewable lignocellulosic materials emerge as promising substitutes. However, their practical application remains hindered by unsatisfactory properties such as fragility and sensitivity to water. Dealing with the challenge of non-thermal processing of xylan and addressing the issue of performance degradation resulting from the hygroscopicity of materials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!