The multidrug resistance transporter, P-glycoprotein (P-gp), contributes to highly lipophilic molecules penetrating the brain from the blood at a much lower rate than expected, and has numerous substrates, inhibitors and modulators. The drug-transporting isoform of P-gp is coded by a single human gene, ABCB1, and shares 80% homology with the murine drug-transporting isoforms, abcb1a and abcb1b, which share 92% homology with each other. Although these murine isoforms are highly similar, there are known affinity differences between the isoforms, and the localisation of the two isoforms in the brain is also disputed. Studies using mice genetically modified to be deficient in one or both isoforms of P-gp have also resulted in conflicting data. The contribution of the abcb1a isoform, which is considered to contribute most to the central nervous system (CNS)-protective role of P-gp, is investigated in the present study using CF-1-abcb1a(-/-) mice and the well-established brain/choroid plexus perfusion technique. Twenty-minute in situ brain/choroid plexus perfusions in CF-1-abcb1a(-/-) mice indicated the increased accumulation of [(3) H]cortisol, [(3) H]corticosterone and [(3) H]dexamethasone in most of the brain regions examined compared to CF-1-abcb1a(+/+) mice. Taken together with our earlier published studies in abcb1a/b(-/-) mice, these data strongly suggest that the in vivo CNS accumulation of glucocorticoids obtained using single knockout strains [e.g. abcb1a(-/-)] cannot be directly compared with those obtained in double knockout strains [e.g. abcb1a/b(-/-)].
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3488597 | PMC |
http://dx.doi.org/10.1111/j.1365-2826.2012.02353.x | DOI Listing |
Free Radic Biol Med
January 2025
Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan, Shanxi 030619, China; School of Pharmacy, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China. Electronic address:
Cardiac metabolism relies on glycogen conversion by glycolysis. Glycolysis intersects fatty acid oxidation and often directs a signal crosstalk between redox metabolites. Myocardium with ischemia/reperfusion significantly diverts from normal metabolism.
View Article and Find Full Text PDFNat Rev Dis Primers
January 2025
Endocrine Division, Department of Medicine, Centre hospitalier de l'Université de Montréal (CHUM), Montreal, Québec, Canada.
Cushing syndrome (CS) is a constellation of signs and symptoms caused by excessive exposure to exogenous or endogenous glucocorticoid hormones. Endogenous CS is caused by increased cortisol production by one or both adrenal glands (adrenal CS) or by elevated adrenocorticotropic hormone (ACTH) secretion from a pituitary tumour (Cushing disease (CD)) or non-pituitary tumour (ectopic ACTH secretion), which stimulates excessive cortisol production. CS is associated with severe multisystem morbidity, including impaired cardiovascular and metabolic function, infections and neuropsychiatric disorders, which notably reduce quality of life.
View Article and Find Full Text PDFJ Endocrinol
January 2025
V Dubois, Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
Glucocorticoids and androgens affect each other in several ways. In metabolic organs such as adipose tissue and the liver, androgens enhance glucocorticoid-induced insulin resistance and promote fat accumulation in male mice. However, the direct contribution of the androgen receptor (AR) to these effects is unknown.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11651, Cairo, Egypt.
The clinical use of dexamethasone (DXM) is associated with the development of non-alcoholic fatty liver disease (NAFLD). However, the mechanisms by which DXM-induced NAFLD is still incompletely known. Therefore, the current study aims to test the hypothesis that DXM-induced NAFLD is mediated by dysregulation of key genes involved in lipid metabolism and liraglutide (LG) can ameliorate these effects.
View Article and Find Full Text PDFMol Pharm
January 2025
Department of Pharmaceutics, School of Pharmacy, University of Minnesota, Minneapolis, Minnesota 55455, United States.
With increasing prevalence globally, obesity presents unique challenges to the clinical management of other diseases. In the case of acute respiratory distress syndrome (ARDS), glucocorticoid therapy (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!