Regulation of osteoblastic differentiation by the proteasome inhibitor bortezomib.

Genes Cells

Biochemistry and Molecular Biology, Graduate School of Dental Medicine, Hokkaido University, Sapporo, 060-8586, Japan.

Published: July 2012

AI Article Synopsis

  • The ubiquitin-proteasome pathway is crucial for degrading proteins in eukaryotic cells and is now linked to bone metabolism regulation.
  • Bortezomib, a proteasome inhibitor used in cancer treatment, was found to enhance the expression of genes related to bone formation, specifically osteocalcin and alkaline phosphatase, while inhibiting muscle cell differentiation.
  • Bortezomib's effects mimic those of bone morphogenetic protein 2 but do not activate BMP signaling; instead, it boosts osteocalcin promoter activity through Runx2, highlighting the proteasome's role in osteoblast differentiation.

Article Abstract

In eukaryotic cells, degradation of most intracellular proteins is carried out by the ubiquitin-proteasome pathway. Recent investigations suggest that bone metabolism is also regulated by this pathway. The clinical efficacy of bortezomib, a 26S proteasome inhibitor used as an anticancer drug, has been linked to an increase in bone formation. In this study, we show that proteasome inhibitors induce expression of osteoblastic differentiation-related genes such as osteocalcin and alkaline phosphatase in C2C12 cells. In contrast, myogenic differentiation is inhibited. Among the proteasome inhibitors tested, bortezomib induced the greatest increase in osteocalcin expression. Although these effects were similar to that of bone morphogenetic protein (BMP) 2, proteasome inhibitors did not induce transcriptional activity of Smad1/4-dependent reporter or BMP2 signaling target gene expression. Transient transfection of osteocalcin promoter-luciferase constructs with bortezomib resulted in an increase in luciferase activity. Mutation of OSE2, but not OSE1, sites of the osteocalcin promoter diminished the bortezomib-induced activity. Also, Runx2 binding activity and protein levels were induced by bortezomib treatment. These results suggest that the bortezomib induces osteoblastic differentiation by modifying the activity of Runx2 and that the function of the proteasome in controlling degradation of differentiation-related transcription factors plays an important role in osteoblast differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2443.2012.01611.xDOI Listing

Publication Analysis

Top Keywords

proteasome inhibitors
12
osteoblastic differentiation
8
proteasome inhibitor
8
inhibitors induce
8
activity runx2
8
proteasome
6
bortezomib
6
activity
5
regulation osteoblastic
4
differentiation
4

Similar Publications

Multiple myeloma (MM) is a bone-marrow-based cancer of plasma cells. Over the last 2 decades, marked treatment advances have led to improvements in the overall survival (OS) of patients with this disease. Key developments include the use of chemotherapy, immunomodulatory drugs, proteasome inhibitors, and monoclonal antibodies.

View Article and Find Full Text PDF

Infectious bursal disease virus affecting interferon regulatory factor 7 signaling through VP3 protein to facilitate viral replication.

Front Cell Infect Microbiol

January 2025

Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, Guangxi, China.

Interferon regulatory factor 7 (IRF7)-mediated type I interferon antiviral response is crucial for regulating the host following viral infection in chickens. Infectious bursal disease virus (IBDV) is a double-stranded RNA virus that induces immune suppression and high mortality rates in chickens aged 3-6 weeks. Previous studies have shown that IBDV infection antagonizes the type I interferon production to facilitate viral replication in the cell, and IRF7 signaling might play an important role.

View Article and Find Full Text PDF

Multiple myeloma (MM) represents a difficult-to-treat plasma cell malignancy and the second most common hematologic malignancy in adults, significantly impacting kidney function. The spectrum of kidney involvement in MM is broad, encompassing electrolyte imbalances, tubular injury, and even rare glomerular diseases. The evolution of MM treatment modalities has led to notable improvements in the long-term survival of patients experiencing kidney-related complications.

View Article and Find Full Text PDF

Multiple myeloma is characterized by malignant cells which produce high amounts of monoclonal immunoglobulin. Myeloma cells are, therefore, dependent on effective protein degradation. Proteasomal protein degradation is targeted by proteasome inhibitors in routine care.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!