Molecular dynamics simulations of peptide inhibitors complexed with Trypanosoma cruzi trypanothione reductase.

Chem Biol Drug Des

Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Bloco D, Sala D-030, Cidade Universitária, Ilha do Fundão, 21941-902 Rio de Janeiro, RJ, Brasil.

Published: October 2012

The drugs against tropical neglected diseases, especially Chagas' Disease, were launched more than 30 years ago, and the development of resistance requires the discovery of new and more effective chemotherapeutic agents. Trypanosoma cruzi has a redox enzyme called trypanothione reductase which was successfully inhibited for peptide derivatives (McKie et al., Amino Acids, 2001, 20: 145). This work aims at studying the mechanism of inhibition of this enzyme through molecular dynamics simulations and evaluating the behavior of some derivatives when inhibiting this protein. We should affirm that any particular molecular dynamics analysis tools (Hbond pattern, 3-D root-mean-square deviation, solvent accessible surface area, etc.) cannot be used apart from the others to justify completely these peptides inhibitory patterns. Based on our results, we reproduced the experimental data and, moreover, we discriminated against a new site in enzyme aperture, which can assist the development of powerful inhibitors against trypanothione reductase enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1747-0285.2012.01429.xDOI Listing

Publication Analysis

Top Keywords

molecular dynamics
12
trypanothione reductase
12
dynamics simulations
8
trypanosoma cruzi
8
simulations peptide
4
peptide inhibitors
4
inhibitors complexed
4
complexed trypanosoma
4
cruzi trypanothione
4
reductase drugs
4

Similar Publications

Detection of O25b-ST131 clone in extended spectrum beta-lactamase-producing E. coli from urinary tract infections in Mexico.

J Infect Dev Ctries

December 2024

Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Departamento de Diagnóstico Epidemiológico. Cuernavaca, Morelos, México.

Introduction: Escherichia coli has emerged as an important pathogen in urinary tract infections (UTIs) due to the rapid acquisition of antibiotic resistance genes. This enhances the ability of E. coli to colonize and creates therapeutic challenges within the healthcare system.

View Article and Find Full Text PDF

The increasing power and integration of electronic devices have intensified serious heat accumulation, driving the demand for higher intrinsic thermal conductivity in thermal interface materials, such as polydimethylsiloxane (PDMS). Grafting mesogens onto PDMS can enhance its intrinsic thermal conductivity. However, the high stability of the PDMS chain limits the grafting density of mesogens, restricting the improvement in thermal conductivity.

View Article and Find Full Text PDF

CD47, a cell surface protein, serves as a "don't eat me" signal that prevents immune cells from engulfing healthy cells upon its interaction with SIRPα. Cancer cells exploit this mechanism by overexpressing CD47 to evade immune destruction. Blocking the interaction between CD47 and its receptor, SIRPα, is a promising therapeutic strategy.

View Article and Find Full Text PDF

Sea buckthorn is a model of medicine and food homology, but the chemical composition and mechanism of anti-inflammatory effects are limited. In this study, the key components and mechanisms of the anti-inflammatory effects of sea buckthorn were identified based on UPLC-Q-TOF-MS, network pharmacology, molecular docking, molecular dynamics and RAW264.7 cells.

View Article and Find Full Text PDF

Exploring the mechanism of Radix Bupleuri in the treatment of depression combined with SARS-CoV-2 infection through bioinformatics, network pharmacology, molecular docking, and molecular dynamic simulation.

Metab Brain Dis

January 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China.

Background: Radix Bupleuri is commonly used in treating depression and acute respiratory diseases such as SARS-CoV-2 infection in China. However, its underlying mechanism in treating major depressive disorder combined with SARS-CoV-2 infection remains unclear.

Aim: This study aims to elucidate the pharmacological mechanisms of Radix Bupleuri in treating major depressive disorder combined with SARS-CoV-2 infection, employing bioinformatics, network pharmacology, molecular docking, and dynamic simulation techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!