A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

K(Ca)2 and k(ca)3 channels in learning and memory processes, and neurodegeneration. | LitMetric

Calcium-activated potassium (K(Ca)) channels are present throughout the central nervous system as well as many peripheral tissues. Activation of K(Ca) channels contribute to maintenance of the neuronal membrane potential and was shown to underlie the afterhyperpolarization (AHP) that regulates action potential firing and limits the firing frequency of repetitive action potentials. Different subtypes of K(Ca) channels were anticipated on the basis of their physiological and pharmacological profiles, and cloning revealed two well defined but phylogenetic distantly related groups of channels. The group subject of this review includes both the small conductance K(Ca)2 channels (K(Ca)2.1, K(Ca)2.2, and K(Ca)2.3) and the intermediate-conductance (K(Ca)3.1) channel. These channels are activated by submicromolar intracellular Ca(2+) concentrations and are voltage independent. Of all K(Ca) channels only the K(Ca)2 channels can be potently but differentially blocked by the bee-venom apamin. In the past few years modulation of K(Ca) channel activation revealed new roles for K(Ca)2 channels in controlling dendritic excitability, synaptic functioning, and synaptic plasticity. Furthermore, K(Ca)2 channels appeared to be involved in neurodegeneration, and learning and memory processes. In this review, we focus on the role of K(Ca)2 and K(Ca)3 channels in these latter mechanisms with emphasis on learning and memory, Alzheimer's disease and on the interplay between neuroinflammation and different neurotransmitters/neuromodulators, their signaling components and K(Ca) channel activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3372087PMC
http://dx.doi.org/10.3389/fphar.2012.00107DOI Listing

Publication Analysis

Top Keywords

kca channels
16
kca2 channels
16
channels
12
learning memory
12
kca2 kca3
8
kca3 channels
8
memory processes
8
kca channel
8
channel activation
8
kca2
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!