Coffea arabica L. (arabica coffee), the only tetraploid species in the genus Coffea, represents the majority of the world's coffee production and has a significant contribution to Nicaragua's economy. The present paper was conducted to determine the genetic diversity of arabica coffee in Nicaragua for its conservation and breeding values. Twenty-six populations that represent eight varieties in Nicaragua were investigated using simple sequence repeat (SSR) markers. A total of 24 alleles were obtained from the 12 loci investigated across 260 individual plants. The total Nei's gene diversity (H(T)) and the within-population gene diversity (H(S)) were 0.35 and 0.29, respectively, which is comparable with that previously reported from other countries and regions. Among the varieties, the highest diversity was recorded in the variety Catimor. Analysis of variance (AMOVA) revealed that about 87% of the total genetic variation was found within populations and the remaining 13% differentiate the populations (F(ST) = 0.13; P < 0.001). The variation among the varieties was also significant. The genetic variation in Nicaraguan coffee is significant enough to be used in the breeding programs, and most of this variation can be conserved through ex situ conservation of a low number of populations from each variety.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3373144PMC
http://dx.doi.org/10.1100/2012/939820DOI Listing

Publication Analysis

Top Keywords

arabica coffee
12
genetic diversity
8
diversity arabica
8
coffea arabica
8
simple sequence
8
sequence repeat
8
gene diversity
8
genetic variation
8
arabica
5
coffee
5

Similar Publications

Cationic liposomes as carriers of natural compounds from plant extract.

Biophys Chem

December 2024

Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.

Lipid-based nanocarriers provide versatile platforms for the encapsulation and delivery of many different bioactive compounds to improve the solubility, stability and therapeutic efficacy of bioactive phyto-compounds. In this study, liposomes were used to load leaf extract of Coffea Arabica, which is known to be rich beneficial substances such as alkaloids, flavonoids, etc. The aim of this work is to optimize the valorization of agricultural wastes containing natural antioxidants.

View Article and Find Full Text PDF

<b>Background and Objective:</b> Todolo coffee (<i>Coffea arabica</i> L. var. typica) is the oldest commercially grown coffee in the Toraja region of South Sulawesi and is currently at risk of extinction.

View Article and Find Full Text PDF

Estimation of dietary acrylamide exposure of Ethiopian population through coffee consumption.

J Food Prot

December 2024

Center for Food Science and Nutrition, College of Natural and Computational Sciences, Addis Ababa University, Addis Ababa, Ethiopia. Electronic address:

This study estimated the acrylamide exposure of the Ethiopian population through traditional brewing of Coffee arabica. Acrylamide concentrations in traditionally processed Ethiopian C. arabica varieties from Jimma, Sidama, Yirgacheffe, Nekemte, and Hararge were measured.

View Article and Find Full Text PDF

Comparative lipidomics analysis reveals changes in lipid profile of Arabica coffee at different maturity.

Food Chem X

December 2024

Yunnan Agricultural Reclamation Coffee Co., Ltd Kunming, 650228, Yunnan, PR China.

This study aimed to investigate the effects of maturity on the changes in major lipid metabolites of coffee and their associated pathways. UPLC-ESI-MS/MS was used to compare the lipidomic profiles of coffee beans at five different maturity stages. A total of 516 lipid metabolites across 26 subclasses were identified, with 111 showing significant differences.

View Article and Find Full Text PDF

Insight into how fermentation might contribute to the distinctiveness of Australian coffee.

Food Chem

December 2024

School of Agriculture, Food and Wine, and Waite Research Institute, The University of Adelaide, PMB 1, Glen Osmond, South Australia 5064, Australia. Electronic address:

Article Synopsis
  • The study focused on three coffee estates in New South Wales, aiming to enhance the flavor profiles of Australian coffee through different processing methods (wet fermented and non-fermented).
  • Researchers analyzed 33 volatile compounds in both green and roasted coffee beans, identifying various esters, alcohols, acids, and more, while also assessing sensory characteristics like appearance and flavor.
  • Findings indicated that wet fermentation improved certain desirable aromas and flavors in coffee, particularly enhancing notes associated with premium coffees, such as "black tea leaves" and "dark chocolate."
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!