Pulse-labelling of trees with stable or radioactive carbon (C) isotopes offers the unique opportunity to trace the fate of labelled CO(2) into the tree and its release to the soil and the atmosphere. Thus, pulse-labelling enables the quantification of C partitioning in forests and the assessment of the role of partitioning in tree growth, resource acquisition and C sequestration. However, this is associated with challenges as regards the choice of a tracer, the methods of tracing labelled C in tree and soil compartments and the quantitative analysis of C dynamics. Based on data from 47 studies, the rate of transfer differs between broadleaved and coniferous species and decreases as temperature and soil water content decrease. Labelled C is rapidly transferred belowground-within a few days or less-and this transfer is slowed down by drought. Half-lives of labelled C in phloem sap (transfer pool) and in mature leaves (source organs) are short, while those of sink organs (growing tissues, seasonal storage) are longer. (13)C measurements in respiratory efflux at high temporal resolution provide the best estimate of the mean residence times of C in respiratory substrate pools, and the best basis for compartmental modelling. Seasonal C dynamics and allocation patterns indicate that sink strength variations are important drivers for C fluxes. We propose a conceptual model for temperate and boreal trees, which considers the use of recently assimilated C versus stored C. We recommend best practices for designing and analysing pulse-labelling experiments, and identify several topics which we consider of prime importance for future research on C allocation in trees: (i) whole-tree C source-sink relations, (ii) C allocation to secondary metabolism, (iii) responses to environmental change, (iv) effects of seasonality versus phenology in and across biomes, and (v) carbon-nitrogen interactions. Substantial progress is expected from emerging technologies, but the largest challenge remains to carry out in situ whole-tree labelling experiments on mature trees to improve our understanding of the environmental and physiological controls on C allocation.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/tps057DOI Listing

Publication Analysis

Top Keywords

pulse-labelling trees
8
allocation
5
pulse-labelling
4
trees study
4
study carbon
4
carbon allocation
4
allocation dynamics
4
dynamics review
4
review methods
4
methods current
4

Similar Publications

Isotopic pulse-labelling of photosynthate allows tracing of carbon (C) from tree canopies to belowground biota and calculations of its turnover in roots and recipient soil microorganisms. A high concentration of label is desirable, but is difficult to achieve in field studies of intact ecosystem patches with trees. Moreover, root systems of trees overlap considerably in most forests, which requires a large labelled area to minimize the impact of C allocated belowground by un-labelled trees.

View Article and Find Full Text PDF

Physiological water stress induced by low root temperatures might contribute to species-specific climatic limits of tree distribution. We investigated the low temperature sensitivity of root water uptake and transport in seedlings of 16 European tree species which reach their natural upper elevation distribution limits at different distances to the alpine treeline. We used H-HO pulse-labelling to quantify the water uptake and transport velocity from roots to leaves in seedlings exposed to constant 15°C, 7°C or 2°C root temperature, but identical aboveground temperatures between 20°C and 25°C.

View Article and Find Full Text PDF

Drought responses and carbon allocation strategies of poplar with different leaf maturity.

Physiol Plant

February 2024

Key Laboratory for Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.

Leaf characteristics can reflect the adaptation of trees to drought stress. However, the effect of leaf maturity on drought stress has been neglected, leading to uncertainty in inferring individual tree responses to drought from leaves. The allocation strategy of photosynthetic carbon between leaf organs (fully expanded young and old leaves) under drought stress remains unclear.

View Article and Find Full Text PDF

Water limitation intensity shifts carbon allocation dynamics in Scots pine mesocosms.

Plant Soil

June 2023

Department of Environmental Systems Science, Sustainable Agroecosystems Group, ETH Zürich, Universitätstrasse 2, 8092 Zurich, Switzerland.

Background And Aims: Tree species worldwide suffer from extended periods of water limitation. These conditions not only affect the growth and vitality of trees but also feed back on the cycling of carbon (C) at the plant-soil interface. However, the impact of progressing water loss from soils on the transfer of assimilated C belowground remains unresolved.

View Article and Find Full Text PDF

Negative effects of low root temperatures on water and carbon relations in temperate tree seedlings assessed by dual isotopic labelling.

Tree Physiol

July 2022

Department of Environmental Sciences - Botany, University of Basel, Schönbeinstrasse 6, Basel 4056, Switzerland.

Low root zone temperatures restrict water and carbon (C) uptake and transport in plants and may contribute to the low temperature limits of tree growth. Here, we quantified the effects of low root temperatures on xylem conductance, photosynthetic C assimilation and phloem C transport in seedlings of four temperate tree species (two broad-leaved and two conifer species) by applying a simultaneous stable isotope labelling of 2H-enriched source water and 13C-enriched atmospheric CO2. Six days before the pulse labelling, the seedlings were transferred to hydroponic tubes and exposed to three different root temperatures (2, 7 and 15 °C), while all seedlings received the same, warm air temperatures (between 18 and 24 °C).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!