Skin epithelial cells as possible substitutes for ameloblasts during tooth regeneration.

J Tissue Eng Regen Med

Research and Development Centre for Tissue Engineering, Fourth Military Medical University, Xi'an, Shaanxi, People's Republic of China; Institute of Stomatology, General Hospital of Chinese People's Liberation Army, Beijing, People's Republic of China.

Published: December 2013

The disappearance of ameloblasts in erupted teeth hampers the implementation of tissue engineering-based tooth regeneration. We aimed at utilizing skin epithelial cells as the appropriate substitute for ameloblasts. The conversion potential of 1 day postnatal rat skin epithelial cells to ameloblasts was investigated under the induction of dental papillae mesenchymal cells (DPMCs). Induction strategies had been designed both in vitro and in vivo. Markers for ameloblasts had been detected in skin epithelial cells, which showed a columnar appearance with the nuclei located at one side, under indirect co-culture with DPMCs in vitro. An enamel-dentine-like and tooth germ-like structure was formed by recombining skin epithelial pieces or cells with DPMCs after 14 days of implantation in rat renal capsule. Immunohistochemistry and cell labelling analysis further demonstrated that the enamel-forming cells were skin epithelium-derived. These results indicated that the skin epithelium-derived cells from postnatal rats have the potential to convert to functional ameloblasts under effective induction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/term.1485DOI Listing

Publication Analysis

Top Keywords

skin epithelial
20
epithelial cells
16
cells
8
tooth regeneration
8
cells dpmcs
8
skin epithelium-derived
8
skin
7
ameloblasts
6
cells substitutes
4
substitutes ameloblasts
4

Similar Publications

Resonance-Induced Therapeutic Technique for Skin Cancer Cells.

Ultrasound Med Biol

January 2025

Institute of Biomedical Technologies, Auckland University of Technology, Auckland City, 1010, Auckland, New Zealand. Electronic address:

Objective: This study aims to evaluate the viability of a hypothesis for selective targeting of skin cancer cells by exploiting the spectral gap with healthy cells using analytical and numerical simulation.

Methods: The spectral gap was first identified using a viscoelastic dynamic model, with the physical and mechanical properties of healthy and cancerous skin cells deduced from previous experimental studies conducted on cell lines. The outcome of the analytical simulation was verified numerically using modal and harmonic analysis.

View Article and Find Full Text PDF

Squamous cell carcinoma is the most common malignancy of the head and neck. Pseudovascular squamous cell carcinoma (PSCC) is a rare variant that occurs commonly in the skin of the head and neck. However, oral cavity involvement is extremely rare, with only a few cases reported to date.

View Article and Find Full Text PDF

G-Protein Coupled Receptor, Class C, Group 5, Member A (GPRC5A) has been extensively studied in lung and various epithelial cancers. Nevertheless, its role in the skin remains to be elucidated. In this study, we sought to investigate the function of this receptor in skin biology.

View Article and Find Full Text PDF

Case report of the successful treatment of pemphigus vulgaris using ovine forestomach matrix graft.

J Surg Case Rep

January 2025

Department of Medical Affairs, Aroa Biosurgery Limited, 64 Richard Pearse Drive, Auckland 2022, New Zealand.

Pemphigus vulgaris (PV) is a subtype of pemphigus and life-altering disorder that results in the formation of intraepithelial blisters in mucosa and skin. Though the etiology is not well understood, it is an autoimmune disorder resulting in acantholytic blisters due to auto-antibodies targeting proteins of keratinocyte adhesion. Rapid diagnosis and restoration of the epidermal layer is imperative for patients with PV as widespread epidermal damage can lead to high morbidity and mortality rates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!