Five new saccharide fatty acid esters, named nonioside P (3), nonioside Q (4), nonioside R (8), nonioside S (10), and nonioside T (14), and one new succinic acid ester, butyl 2-hydroxysuccinate (=4-butoxy-3-hydroxy-4-oxobutanoic acid) (31), were isolated, along with 26 known compounds, including eight saccharide fatty acid esters, 1, 2, 5, 6, 7, 9, 12, and 13, three hemiterpene glycosides, 15, 17, and 18, six iridoid glycosides, 21-25, and 27, and nine other compounds, 20, 28, 29, and 32-37, from a MeOH extract of the fruit of Morinda citrifolia (noni). Upon evaluation of these and five other glycosidic compounds, 11, 16, 19, 26, and 30, from M. citrifolia fruit extract for their inhibitory activities against melanogenesis in B16 melanoma cells induced with α-melanocyte-stimulating hormone (α-MSH), most of the saccharide fatty acid esters, hemiterpene glycosides, and iridoid glycosides showed inhibitory effects with no or almost no toxicity to the cells. These compounds were further evaluated with respect to their cytotoxic activities against two human cancer cell lines (HL-60 and AZ521) and their inhibitory effects on Epstein-Barr virus early antigen (EBV-EA) activation induced with 12-O-tetradecanoylphorbol-13-acetate (TPA) in Raji cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cbdv.201100349 | DOI Listing |
Sci Adv
January 2025
Division of Molecular Medicine, Department of Medicine, University of Minnesota Medical School, Minneapolis, MN, USA.
Ketogenesis is a dynamic metabolic conduit supporting hepatic fat oxidation particularly when carbohydrates are in short supply. Ketone bodies may be recycled into anabolic substrates, but a physiological role for this process has not been identified. Here, we use mass spectrometry-based C-isotope tracing and shotgun lipidomics to establish a link between hepatic ketogenesis and lipid anabolism.
View Article and Find Full Text PDFDis Model Mech
January 2025
Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford OX3 7LE, UK.
The excessive accumulation of intrahepatic triglyceride (IHTG) in the liver is a risk factor for metabolic diseases, including type 2 diabetes and cardiovascular disease. IHTG can excessively accumulate owing to imbalances in the delivery, synthesis, storage and disposal of fat to, in and from the liver. Although obesity is strongly associated with IHTG accumulation, emerging evidence suggests that the composition of dietary fat, in addition to its quantity, plays a role in mediating IHTG accumulation.
View Article and Find Full Text PDFGastro Hep Adv
September 2024
Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
Background And Aims: Steatotic liver disease (SLD) is the most common chronic liver disease strongly associated with metabolic dysfunction, but its pathogenesis remains incompletely understood. Exploring plasma circulating metabolites may help in elucidating underlying mechanisms and identifying new biomarkers for SLD.
Methods: We examined cross-sectionally the association between plasma metabolites and SLD as well as liver enzymes using data from 4 population-based cohort studies (Rotterdam study, Avon Longitudinal Study of Parents and Children, The Insulin Resistance Atherosclerosis Family Study, and Study of Latinos).
World J Gastroenterol
January 2025
State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi 830000, Xinjiang Uyghur Autonomous Region, China.
Background: polysaccharides (BSP) have antioxidant, immune regulation, and anti-fibrotic activities. However, the therapeutic effect and mechanisms underlying the action of BSP in metabolic dysfunction-associated steatotic liver disease (MASLD) have not been fully understood.
Aim: To investigate the therapeutic effects and mechanisms of BSP on MASLD by centering on the hepatocyte nuclear factor kappa B p65 (RelA)/hepatocyte nuclear factor-1 alpha (HNF1α) signaling.
BMC Gastroenterol
January 2025
Health Management Center, the First Affiliated Hospital of Zhejiang University School of Medicine, No.79 Qingchun Road, Shangcheng District, Hangzhou, Zhejiang, China.
Objectives: Over 30% of people worldwide suffer from metabolic dysfunction-associated steatotic liver disease (MASLD), a significant global health issue. Identifying and preventing high-risk individuals for MASLD early is crucial. The purpose of our study is to investigate the factors related to the development of MASLD and develop a risk prediction model for its occurrence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!