In recent years, a large number of human studies have investigated large-scale network properties of the brain, typically during the resting state. A critical gap in the knowledge base concerns the understanding of network properties of a focused set of brain regions during task conditions engaging these regions. Although emotion and motivation recruit many brain regions, it is currently unknown how they affect network-level properties of inter-region interactions. In the present study, we sought to characterize network structure during "mini-states" engendered by emotional and motivational cues investigated in separate studies. To do so, we used graph-theoretic network analysis to probe network-, community-, and node-level properties of the trial-by-trial functional connectivity between regions of interest. We used methods that operate on weighted graphs that make use of the continuous information of connectivity strength. In both the emotion and motivation datasets, global efficiency increased and decomposability decreased. Thus, processing became less segregated with the context signaled by the cue (potential shock or potential reward). Our findings also revealed several important features of inter-community communication, including notable contributions of the bed nucleus of the stria terminalis, anterior insula, and thalamus during threat and of the caudate and nucleus accumbens during reward. Together, the results suggest that one way in which emotional and motivational processing affect brain responses is by enhancing signal communication between regions, especially between cortical and subcortical ones.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3400262 | PMC |
http://dx.doi.org/10.1523/JNEUROSCI.0821-12.2012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!