Network conditions for Turing instability in biochemical systems with two biochemical species are well known and involve autocatalysis or self-activation. On the other hand general network conditions for potential Turing instabilities in large biochemical reaction networks are not well developed. A biochemical reaction network with any number of species where only one species moves is represented by a simple digraph and is modeled by a reaction-diffusion system with non-mass action kinetics. A graph-theoretic condition for potential Turing-Hopf instability that arises when a spatially homogeneous equilibrium loses its stability via a single pair of complex eigenvalues is obtained. This novel graph-theoretic condition is closely related to the negative cycle condition for oscillations in ordinary differential equation models and its generalizations, and requires the existence of a pair of subnetworks, each containing an even number of positive cycles. The technique is illustrated with a double-cycle Goodwin type model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mbs.2012.05.007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!