Insulin-like growth factors (IGF-I and IGF-II), and insulin are evolutionarily conserved hormonal regulators of eukaryotic growth and development. Through interactions with their cognate receptors, all three molecules can influence cellular growth, proliferation, differentiation, migration, and survival, as well as metabolic processes. As such, perturbations in signaling by IGFs and insulin are a well-documented cause of altered growth, development and survival during both embryonic and post-natal life. A key approach in understanding how IGFs and insulin elicit their biological effects has been through identifying structural features of the ligands that influence their receptor interactions. Over the years, the study of many hundreds of specifically engineered IGF and insulin analogues has provided a wealth of knowledge about how specific residues of these ligands contribute to ligand:receptor interactions. Some analogues have even provided the basis for designing therapeutic agents for the treatment of IGF and insulin-related diseases. As the list of IGF and insulin analogues continues to grow we find that, while many have been produced and studied, it would be of considerable value to have a central repository from which information about specific analogues and their receptor binding data were readily available in an easily searchable and comparable format. To address this, we have created the "Insulin-like growth factor mutation database" (IGFmdb). The IGFmdb is a web-based curated database of annotated ligand analogues and their receptor binding affinities that can be accessed via http://www.adelaide.edu.au/igfmutation. Currently the IGFmdb contains receptor-binding data for 67 IGF-II analogues that were publicly accessible prior to 2012, as well as 67 IGF-I analogues, including all of those produced and characterised in our laboratory. A small number of these are IGF species homologues. There are also 32 insulin analogues within IGFmdb that were reported within the included IGF analogue studies, representing only a small fraction of existing insulin mutants. Future developments of the IGFmdb will incorporate receptor-binding data for all publicly accessible IGF-I analogues and the data will be expanded to include IGF-binding protein (IGFBP) binding affinities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ghir.2012.05.001 | DOI Listing |
Biol Pharm Bull
January 2025
Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan.
The hypoglycemic effects of nateglinide (NTG) were examined in rats with acute peripheral inflammation (API) induced by carrageenan treatment, and the mechanisms accounting for altered hypoglycemic effects were investigated. NTG was administered through the femoral vein in control and API rats, and its plasma concentration profile was characterized. The time courses of the changes in plasma glucose and insulin levels were also examined.
View Article and Find Full Text PDFElife
January 2025
Neurobiology and Genetics, Theodor-Boveri-Institute, Biocenter, Julius-Maximilians-University of Würzburg, Würzburg, Germany.
Insulin plays a key role in metabolic homeostasis. insulin-producing cells (IPCs) are functional analogues of mammalian pancreatic beta cells and release insulin directly into circulation. To investigate the in vivo dynamics of IPC activity, we quantified the effects of nutritional and internal state changes on IPCs using electrophysiological recordings.
View Article and Find Full Text PDFbioRxiv
January 2025
Section of Cell Biology and Functional Genomics, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom.
The use of incretin analogues has emerged in recent years as an effective approach to achieve both enhanced insulin secretion and weight loss in type 2 diabetes (T2D) patients. Agonists which bind and stimulate multiple receptors have shown particular promise. However, off target effects, including nausea and diarrhoea, remain a complication of using these agents, and modified versions with optimized pharmacological profiles and/or biased signaling at the cognate receptors are increasingly sought.
View Article and Find Full Text PDFJ Tissue Eng
January 2025
Department of Chemical Engineering, McGill University, Montreal, QC, Canada.
Islet transplantation and more recently stem cell-derived islets were shown to successfully re-establish glycemic control in people with type 1 diabetes under immunosuppression. These results were achieved through intraportal infusion which leads to early graft losses and limits the capacity to contain and retrieve implanted cells in case of adverse events. Extra-hepatic sites and encapsulation devices have been developed to address these challenges and potentially create an immunoprotective or immune-privileged environment.
View Article and Find Full Text PDFNutrients
January 2025
Instituto de Bioeletricidade Celular (IBIOCEL): Ciência & Saúde, Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Rua João Pio Duarte Silva, 241, Sala G 301, Florianópolis 88038-000, SC, Brazil.
Diabetes mellitus is a metabolic syndrome that has grown globally to become a significant public health challenge. Hypothesizing that the plasma membrane protein, transient receptor potential ankyrin-1, is a pivotal target in insulin resistance, we investigated the mechanism of action of cinnamaldehyde (CIN), an electrophilic TRPA1 agonist, in skeletal muscle, a primary insulin target. Specifically, we evaluated the effect of CIN on insulin resistance, hepatic glycogen accumulation and muscle and adipose tissue glucose uptake.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!