Germline mutations in LKB1 (STK11) are associated with the Peutz-Jeghers syndrome (PJS), which includes aberrant mucocutaneous pigmentation, and somatic LKB1 mutations occur in 10% of cutaneous melanoma. By somatically inactivating Lkb1 with K-Ras activation (±p53 loss) in murine melanocytes, we observed variably pigmented and highly metastatic melanoma with 100% penetrance. LKB1 deficiency resulted in increased phosphorylation of the SRC family kinase (SFK) YES, increased expression of WNT target genes, and expansion of a CD24(+) cell population, which showed increased metastatic behavior in vitro and in vivo relative to isogenic CD24(-) cells. These results suggest that LKB1 inactivation in the context of RAS activation facilitates metastasis by inducing an SFK-dependent expansion of a prometastatic, CD24(+) tumor subpopulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3660964PMC
http://dx.doi.org/10.1016/j.ccr.2012.03.048DOI Listing

Publication Analysis

Top Keywords

expansion prometastatic
8
tumor subpopulation
8
lkb1
5
lkb1/stk11 inactivation
4
inactivation leads
4
leads expansion
4
prometastatic tumor
4
subpopulation melanoma
4
melanoma germline
4
germline mutations
4

Similar Publications

Tumor progression is driven by dynamic interactions between cancer cells and their surrounding microenvironment. Investigating the spatiotemporal evolution of tumors can provide crucial insights into how intrinsic changes within cancer cells and extrinsic alterations in the microenvironment cooperate to drive different stages of tumor progression. Here, we integrate high-resolution spatial transcriptomics and evolving lineage tracing technologies to elucidate how tumor expansion, plasticity, and metastasis co-evolve with microenvironmental remodeling in a -driven mouse model of lung adenocarcinoma.

View Article and Find Full Text PDF

Differential activation of macrophages is associated with poor progression of breast cancer (BC). Many reports have elucidated the important involvement of exosomes produced by cancer cells in remodeling the macrophage activation phenotype to promote tumor expansion and invasion. However, the underlying mechanisms by which exosomes secreted by BC cells facilitate macrophage M2 polarization remain enigmatic and worth exploring.

View Article and Find Full Text PDF

Lymph node metastasis, the leading cause of mortality in esophageal squamous carcinoma (ESCC) with a highly complex tumor microenvironment, remains underexplored. Here, the transcriptomes of 85 263 single cells are analyzed from four ESCC patients with lymph node metastases. Strikingly, it is observed that the metastatic microenvironment undergoes the emergence or expansion of interferon induced IFIT3 T, B cells, and immunosuppressive cells such as APOC1 APOE macrophages and myofibroblasts with highly expression of immunoglobulin genes (IGKC) and extracellular matrix component and matrix metallopeptidase genes.

View Article and Find Full Text PDF

Unlabelled: The transcription factor Forkhead box M1 (FoxM1) is overexpressed in breast cancers and correlates with poor prognosis. Mechanistically, FoxM1 associates with CBP to activate transcription and with Rb to repress transcription. Although the activating function of FoxM1 in breast cancer has been well documented, the significance of its repressive activity is poorly understood.

View Article and Find Full Text PDF

The multicellular signalling network of ovarian cancer metastases.

Clin Transl Med

November 2021

Department of Translational Oncology, Center for Tumor Biology and Immunology (ZTI), Philipps University, Marburg, Germany.

Background: Transcoelomic spread is the major route of metastasis of ovarian high-grade serous carcinoma (HGSC) with the omentum as the major metastatic site. Its unique tumour microenvironment with its large populations of adipocytes, mesothelial cells and immune cells establishes an intercellular signaling network that is instrumental for metastatic growth yet poorly understood.

Methods: Based on transcriptomic analysis of tumour cells, tumour-associated immune and stroma cells we defined intercellular signaling pathways for 284 cytokines and growth factors and their cognate receptors after bioinformatic adjustment for contaminating cell types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!