We demonstrate the spin selective coupling of the exciton state with cavity mode in a single quantum dot (QD)-micropillar cavity system. By tuning an external magnetic field, each spin polarized exciton state can be selectively coupled with the cavity mode due to the Zeeman effect. A significant enhancement of spontaneous emission rate of each spin state is achieved, giving rise to a tunable circular polarization degree from -90% to 93%. A four-level rate equation model is developed, and it agrees well with our experimental data. In addition, the coupling between photon mode and each exciton spin state is also achieved by varying temperature, demonstrating the full manipulation over the spin states in the QD-cavity system. Our results pave the way for the realization of future quantum light sources and the quantum information processing applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/nl3008083 | DOI Listing |
J Mol Graph Model
January 2025
Institute of Chemical Physics after A.B. Nalbandyan of NAS RA, 5/2 P. Sevak St., Yerevan, 0014, Armenia.
Liquid crystals (LC) are widely used in various optical devices due to their birefringence, dielectric anisotropy, and responsive behavior to external fields. Enhancing the properties of existing LCs through doping with nanoparticles, including semiconductor quantum dots, offers a promising route for improving their performance. Among various nanoparticles, QDs stand out for their high charge mobility, sensitivity in the near-infrared spectral region, and cost-effectiveness.
View Article and Find Full Text PDFNanoscale Adv
January 2025
Université de Lorraine, CNRS, LRGP F-54000 Nancy France
Water-dispersible core/shell CuInZnSe/ZnS (CIZSe/ZnS) quantum dots (QDs) were efficiently synthesized under microwave irradiation using -acetylcysteine (NAC) and sodium citrate as capping agents. The photoluminescence (PL) emission of CIZSe/ZnS QDs can be tuned from 593 to 733 nm with varying the Zn : Cu molar ratio in the CIZSe core. CIZSe/ZnS QDs prepared with a Zn : Cu ratio of 0.
View Article and Find Full Text PDFNarra J
December 2024
Research Group of Pharmaceutics, School of Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia.
Zebrafish serve as a pivotal model for bioimaging and toxicity assessments; however, the toxicity of banana peel-derived carbon dots in zebrafish has not been previously reported. The aim of this study was to assess the toxicity of carbon dots derived from banana peel in zebrafish, focusing on two types prepared through hydrothermal and pyrolysis methods. Banana peels were synthesized using hydrothermal and pyrolysis techniques and then compared for characteristics, bioimaging ability, and toxicity in zebrafish as an animal model.
View Article and Find Full Text PDFThe construction of an admirable hybrid bulk-heterojunction (HBH) can benefit the performance of optoelectronic devices through efficient charge separation and transportation. However, the present HBH structure still suffers from complicated layer-by-layer ligand exchanges during device fabrication. In this work, we apply a liquid phase exchange strategy in mixed colloidal hybrids composed of quantum dots (QDs) and nanotetrapods (NTs) and construct low-cost flexible self-powered infrared photodetectors with a carbon electrode.
View Article and Find Full Text PDFFabry-Perot (FP) lasers with a cavity length shorten down to 50 µm were investigated. One or two laser mirrors were formed by focused ion beam etching. InGaAs quantum dots of high density were used as the laser active region.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!