A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Thermodynamic analysis of DNA binding by a Bacillus single stranded DNA binding protein. | LitMetric

Thermodynamic analysis of DNA binding by a Bacillus single stranded DNA binding protein.

BMC Biochem

Department of Molecular Biology, School of Osteopathic Medicine & Graduate School of Biomedical Sciences, University of Medicine & Dentistry of New Jersey, Stratford, NJ 08084, USA.

Published: June 2012

Background: Single-stranded DNA binding proteins (SSB) are essential for DNA replication, repair, and recombination in all organisms. SSB works in concert with a variety of DNA metabolizing enzymes such as DNA polymerase.

Results: We have cloned and purified SSB from Bacillus anthracis (SSB(BA)). In the absence of DNA, at concentrations ≤100 μg/ml, SSB(BA) did not form a stable tetramer and appeared to resemble bacteriophage T4 gene 32 protein. Fluorescence anisotropy studies demonstrated that SSB(BA) bound ssDNA with high affinity comparable to other prokaryotic SSBs. Thermodynamic analysis indicated both hydrophobic and ionic contributions to ssDNA binding. FRET analysis of oligo(dT)(70) binding suggested that SSB(BA) forms a tetrameric assembly upon ssDNA binding. This report provides evidence of a bacterial SSB that utilizes a novel mechanism for DNA binding through the formation of a transient tetrameric structure.

Conclusions: Unlike other prokaryotic SSB proteins, SSB(BA) from Bacillus anthracis appeared to be monomeric at concentrations ≤100 μg/ml as determined by SE-HPLC. SSB(BA) retained its ability to bind ssDNA with very high affinity, comparable to SSB proteins which are tetrameric. In the presence of a long ssDNA template, SSB(BA) appears to form a transient tetrameric structure. Its unique structure appears to be due to the cumulative effect of multiple key amino acid changes in its sequence during evolution, leading to perturbation of stable dimer and tetramer formation. The structural features of SSB(BA) could promote facile assembly and disassembly of the protein-DNA complex required in processes such as DNA replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3464605PMC
http://dx.doi.org/10.1186/1471-2091-13-10DOI Listing

Publication Analysis

Top Keywords

dna binding
16
dna
9
thermodynamic analysis
8
dna replication
8
bacillus anthracis
8
ssbba
8
concentrations ≤100
8
≤100 μg/ml
8
ssdna high
8
high affinity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!