AI Article Synopsis

Article Abstract

Three-dimensional core-shell organic-inorganic hybrid solar cells with tunable properties are demonstrated via electropolymerization. Air-stable poly(3,4-ethylenedioxythiophene) (PEDOT) shells with controlled thicknesses are rapidly coated onto periodic GaAs nanopillar arrays conformally, preserving the vertical 3D structure. The properties of the organic layer can be readily tuned in situ, allowing for (1) the lowering of the highest occupied molecular orbital level (|ΔE| ∼ 0.28 eV), leading to the increase of open-circuit voltage (V(OC)), and (2) an improvement in PEDOT conductivity that results in enhanced short-circuit current densities (J(SC)). The incorporation of various anionic dopants in the polymer during the coating process also enables the tailoring of the polymer/semiconductor interface transport properties. Systematic tuning of the device properties results in a J(SC) of 13.6 mA cm(-2), V(OC) of 0.63 V, peak external quantum efficiency of 58.5%, leading to a power conversion efficiencies of 4.11%.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl301251qDOI Listing

Publication Analysis

Top Keywords

three-dimensional core-shell
8
hybrid solar
8
solar cells
8
core-shell hybrid
4
cells controlled
4
controlled situ
4
situ materials
4
materials engineering
4
engineering three-dimensional
4
core-shell organic-inorganic
4

Similar Publications

The optimal method for three-dimensional thermal imaging within cells involves collecting intracellular temperature responses while simultaneously obtaining corresponding 3D positional information. Current temperature measurement techniques based on the photothermal properties of quantum dots face several limitations, including high cytotoxicity and low fluorescence quantum yields. These issues affect the normal metabolic processes of tumor cells.

View Article and Find Full Text PDF

Construction of in situ modulated controlled growth of MOF-on-mof impedimetric assembly for the practical minimal level assessment of anti-mullerian hormone.

Biosens Bioelectron

December 2024

Department of Biological Science and Technology, Institute of Molecular Medicine and Bioengineering, Center for Intelligent Drug Systems and Smart Bio-devices (IDS(2)B), Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; Department of Biomedical Science and Environmental Biology, School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan. Electronic address:

Anti-mullerian hormone (AMH) detection receives much attention since it is used as an ideal biomarker for quantitative assessment of ovarian reserve. The present study proposed a first report on the use of MOF-on-MOF as an electrochemical sensor for recognizing AMH in buffer and serum media. The MOF-on-MOF, MIL-88 B@UiO66NH was synthesized by the internal extended growth method (IEGM) involving MIL-88 B on UiO66NH by in situ method for the first time.

View Article and Find Full Text PDF

Photocatalytic CO reduction to produce C products remains a challenge. Herein, CuO@Cu@NiAl-LDH composites with three-dimensional ordered core-shell structures were successfully prepared, and the effects of CuO with different exposed surfaces on CO photoreduction were investigated. The synergistic effect of zero-valent Cu and Cu as intermediate electron mediators retains more photogenerated electrons and the Z-scheme heterojunction formed between CuO and NiAl-LDH leads to the enhancement of C selectivity.

View Article and Find Full Text PDF

3D printed magnetoactive nanocomposite scaffolds for bone regeneration.

Biomed Mater

December 2024

Department of Biomaterials and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.

Simulating the natural cellular environment using magnetic stimuli could be a potential strategy to promote bone tissue regeneration. This study unveiled a novel 3D printed composite scaffold containing polycaprolactone (PCL) and cobalt ferrite/forsterite core-shell nanoparticles (CFF-NPs) to investigate physical, mechanical and biological properties of magnetoactive scaffold under static magnetic field. For this purpose, core-shell structure is synthesized through a two-step synthesis strategy in which cobalt ferrite nanoparticles are prepared via sol-gel combustion method and then are coated through sol-gel method with forsterite.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers mapped the three-dimensional strain field and identified how indium content in the shell impacts the strain distribution and plastic relaxation processes.
  • * The study found that although axial strains are uniform, radial and tangential strain gradients occur due to strain concentration at interfaces, affecting the growth strategies for these nanowires.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!