Orientation specificity of contrast adaptation in mouse primary visual cortex.

J Neurophysiol

Department of Psychology and Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada.

Published: September 2012

Contrast adaptation is a commonly studied phenomenon in vision, where prolonged exposure to spatial contrast alters perceived stimulus contrast and produces characteristic shifts in the contrast response functions of primary visual cortex neurons in cats and primates. In this study we investigated contrast adaptation in mouse primary visual cortex with two goals in mind. First, we sought to establish a quantitative description of contrast adaptation in an animal model, where genetic tools are more readily applicable to this phenomenon. Second, the orientation specificity of contrast adaptation was studied to comparatively assess the possible role of local cortical networks in contrast adaptation. In cats and primates, predictable differences in visual processing across the cortical surface are thought to be caused by inhomogeneous local network membership that arises from the pinwheel organization of orientation columns. Because mice lack this pinwheel organization, we predicted that local cortical networks would have access to a broad spectrum of orientation signals, and contrast adaptation in mice would not be specific to the recorded cell's preferred orientation. We found that most mouse V1 neurons showed contrast adaptation that was robust regardless of whether the adapting stimulus matched the cell's preferred orientation or was orthogonal to it.

Download full-text PDF

Source
http://dx.doi.org/10.1152/jn.01148.2011DOI Listing

Publication Analysis

Top Keywords

contrast adaptation
32
primary visual
12
visual cortex
12
contrast
11
orientation specificity
8
specificity contrast
8
adaptation
8
adaptation mouse
8
mouse primary
8
cats primates
8

Similar Publications

In order to solve the limitations of flipped classroom in personalized teaching and interactive effect improvement, this paper designs a new model of flipped classroom in colleges and universities based on Virtual Reality (VR) by combining the algorithm of Contrastive Language-Image Pre-Training (CLIP). Through cross-modal data fusion, the model deeply combines students' operation behavior with teaching content, and improves teaching effect through intelligent feedback mechanism. The test data shows that the similarity between video and image modes reaches 0.

View Article and Find Full Text PDF

The evolutionary history underlying gradients in species richness is still subject to discussions and understanding the past niche evolution might be crucial in estimating the potential of taxa to adapt to changing environmental conditions. In this study we intend to contribute to elucidation of the evolutionary history of liverwort species richness distributions along elevational gradients at a global scale. For this purpose, we linked a comprehensive data set of genus occurrences on mountains worldwide with a time-calibrated phylogeny of liverworts and estimated mean diversification rates (DivElev) and mean ages (AgeElev) of the respective genera per elevational band.

View Article and Find Full Text PDF

Aim: To explore the meaning of adaptation after visceral transplantation in terms of patient experiences, symptoms, self-efficacy, transplant-specific and mental well-being.

Design: A convergent parallel mixed-methods study, consisting of interviews and generic as well as transplant-specific questionnaires. Results were integrated using meta-inference.

View Article and Find Full Text PDF

Coronavirus epidemics have posed a serious threat to both human and animal health. To combat emerging infectious diseases caused by coronaviruses, various animal infection models have been developed and applied in research, including non-human primate models, ferret models, hamster models, mouse models, and others. Moreover, new approaches have been utilized to develop animal models that are more susceptible to infection.

View Article and Find Full Text PDF

Leaf and Root Functional Traits of Woody and Herbaceous Halophytes and Their Adaptations in the Yellow River Delta.

Plants (Basel)

January 2025

State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, College of Forestry, Shandong Agricultural University, Tai'an 271000, China.

Leaves and roots perform assimilation, supporting plant growth and functionality. The variations in their functional traits reflect adaptive responses to environmental conditions, yet limited information is available regarding these trait variations and their coordination in saline environments. In this study, 18 common woody and herbaceous halophyte species from the Yellow River Delta were collected, and their leaf and root functional traits were assessed and compared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!