Control of cellular responses is crucial for the use of electrospun membranes in biomedical applications, including tissue engineering or biomedical devices. However, it is still unclear whether adhesion and proliferation of fibroblasts is stimulated or inhibited on polyethylene glycol (PEG)-modified electrospun membranes. In this study, poly(L-lactide-co-glycolide) (PLLGA)-PEG copolymer and pure PEG were blended with PLLGA, and then electrospun onto nonwoven membranes. The effects of blending of PLLGA-PEG or pure PEG on the adsorption of proteins, and further on the adhesion and proliferation of L929 fibroblasts on the electrospun membranes were investigated. Addition of PLLGA-PEG or PEG significantly improved the hydrophilicity of the electrospun membranes. Pure PEG had no obvious effects on the growth of L929 fibroblasts; in contrast, PLLGA-PEG significantly inhibited the adsorption of proteins and the proliferations of the cells on the electrospun membranes. In response to diminished protein adsorption, mRNA expression of genes related to cell adhesion and migration was up-regulated. The limited effects of pure PEG were probably caused by its preferential dissolution, whereas membrane-confined PLLGA-PEG displayed excellent performance on the inhibition of protein adsorption and cell proliferation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.a.34226DOI Listing

Publication Analysis

Top Keywords

electrospun membranes
24
pure peg
16
cellular responses
8
adhesion proliferation
8
adsorption proteins
8
l929 fibroblasts
8
protein adsorption
8
electrospun
7
membranes
7
peg
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!