The Asian corn borer, Ostrinia furnacalis, is a serious pest of corn, sorghum, and cotton in China and other Asian countries. The present study is the first attempt to establish the transgenic line in O. furnacalis using a piggyBac transposon, which will shed light on the future genetic control of O. furnacalis. A piggyBac vector pBac[A3EGFP] was constructed to express enhanced green fluorescence protein (EGFP)under the control of Bombyx mori actin3 promoter. Transient EGFP expression was detected 48 h after preblastodermic microinjection of pBac[A3EGFP] and the excision assay showed the transgenic vector was precisely excised. In G1 animals, PCR (polymerase chain reaction)-based investigations revealed that the exogenous gene had been introduced into O. furnacalis genome and expressed at the transcriptional level. Western blot analysis showed EGFP expression at the protein level, indicating the heritability of the transgene.

Download full-text PDF

Source
http://dx.doi.org/10.1002/arch.21035DOI Listing

Publication Analysis

Top Keywords

asian corn
8
corn borer
8
borer ostrinia
8
ostrinia furnacalis
8
furnacalis piggybac
8
egfp expression
8
furnacalis
5
genetic transformation
4
transformation mediated
4
mediated piggybac
4

Similar Publications

The Asian corn borer, (Guenée), emerges as a significant threat to maize cultivation, inflicting substantial damage upon the crops. Particularly, its larval stage represents a critical point characterised by significant economic consequences on maize yield. To manage the infestation of this pest effectively, timely and precise identification of its larval stages is required.

View Article and Find Full Text PDF

The Asian corn borer (ACB), (Guenée, 1854), is a serious pest of several crops, particularly a destructive pest of maize and other cereals throughout most of Asia, including China, the Philippines, Indonesia, Malaysia, Thailand, Sri Lanka, India, Bangladesh, Japan, Korea, Vietnam, Laos, Myanmar, Afghanistan, Pakistan and Cambodia. It has long been known as a pest in South-east Asia and has invaded other parts of Asia, Solomon Islands, parts of Africa and certain regions of Australia and Russia. Consequently, worldwide efforts have been increased to ensure new control strategies for management.

View Article and Find Full Text PDF

Biocompatible materials fabricated from natural protein polymers are an attractive alternative to conventional petroleum-based plastics. They offer a green, sustainable fabrication method while also opening new applications in biomedical sciences. Available from several sources in the wild and on domestic farms, silk is a widely used biopolymer and one of the strongest natural materials.

View Article and Find Full Text PDF

Developing simple and efficient multi-gene expression systems is crucial for multi-trait improvement or bioproduction in transgenic plants. In previous research, an -based bicistronic system from the nonpathogenic fungus efficiently expressed multiple enzyme proteins in yeast and maize, and the heterologous enzymes successfully performed their catalytic activity to reconstruct the biosynthetic pathway in the host organism. Unlike enzyme proteins, some heterologous functional proteins (such as insecticidal proteins) are dose-dependent and they need to express sufficient levels to perform their biological functions.

View Article and Find Full Text PDF

Plant natural products are crucial in defending against herbivorous insects and are widely used in pest control, yet their mechanisms remain complex and insufficiently studied. This study employed a reverse strategy to investigate the mechanism of camptothecin (CPT), a botanical pesticide. By using a CPT-based chemical probe coupled with proteomic analysis, immune-related proteins, including those involved in prophenoloxidase (PPO) activation and antimicrobial peptide (AMP) synthesis, were identified in the Asian corn borer, .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!