Purpose: Hyaluronan (HA) is a major component of the aqueous outflow pathway. However, the contribution of HA to human outflow resistance remains unclear. Three HA synthase genes (HAS1-3) have been identified. Here, we evaluate the contribution of each of the HAS proteins to outflow facility in anterior segment perfusion culture.

Methods: Two methods were used to reduce HA synthesis: 1 mM 4-methylumbelliferone (4MU) was used to inhibit all HAS synthases and shRNA silencing lentivirus was generated to knock down expression of each HAS individually. Quantitative RT-PCR, Western immunoblotting and an HA ELISA assay were used to assess HAS mRNA and protein levels and HA concentration, respectively. The effects of 4MU treatment and HAS gene silencing on outflow facility were assessed in human and porcine perfusion culture.

Results: Quantitative RT-PCR and Western immunoblotting showed a reduction of each HAS in response to their respective silencing and 4MU treatment. HA concentration was concomitantly reduced. Treatment with 4MU decreased outflow facility in human anterior segments but increased outflow facility in porcine eyes. Lentiviral delivery of HAS1 and HAS2 silencing vectors caused similar opposite effects on outflow facility. Silencing of HAS3 did not significantly affect outflow resistance in either species.

Conclusions: This is the first conclusive evidence for a significant role of HA in the human outflow pathway. HA chains synthesized by HAS1 and HAS2 contribute to outflow resistance, while hyaluronan produced by HAS3 does not appear to play a significant role.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3394696PMC
http://dx.doi.org/10.1167/iovs.12-9500DOI Listing

Publication Analysis

Top Keywords

outflow facility
24
outflow resistance
12
outflow
11
effects outflow
8
outflow pathway
8
human outflow
8
quantitative rt-pcr
8
rt-pcr western
8
western immunoblotting
8
4mu treatment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!