A series of 8-hydroxyquinoline complexes of tin, Q(2)SnCl(2) (Q = 2-methyl-8-hydroxyquinoline, 8-hydroxyquinoline, 5,7-dibromo-8-hydroxyquinoline, 5-chloro-8-hydroxyquinoline, 5,7-dichloro-8-hydroxyquinoline and 5-nitro-8-hydroxyquinoline) were prepared by reacting stannous dichloride with 8-hydroxyquinoline and its derivatives. All complexes were characterized by elemental analysis, mass spectrometry and infrared, UV-vis and (1)H NMR spectroscopes. Furthermore, the molecular structure of a representative complex, dichlorido-bis(5-nitro-quinolin-8-olato-2N,O)tin(IV), was determined by single-crystal X-ray diffraction. The photoluminescence (PL) properties of all prepared compounds and electroluminescence (EL) property of a selected complex (Q = 5-chloro-8-hydroxyquinoline) were investigated. The results showed that the emission wavelength can be tuned by electron donating or withdrawing group substituent on 8-hydroxyquinoline. Application of prepared complexes in fabrication of an OLED has been demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-012-1068-7DOI Listing

Publication Analysis

Top Keywords

8-hydroxyquinoline complexes
8
8-hydroxyquinoline
5
synthesis characterization
4
characterization 8-hydroxyquinoline
4
complexes
4
complexes tiniv
4
tiniv application
4
application organic
4
organic light
4
light emitting
4

Similar Publications

Background/objectives: Breast cancer (BC) remains one of the most prevalent and deadly cancers worldwide, with limited access to advanced treatments in developing regions. There is a critical need for novel therapies with unique mechanisms of action, especially to overcome resistance to conventional platinum-based drugs. This study investigates the anticancer potential of the ruthenium complex Bis(quinolin-8-olato)bis(triphenylphosphine)ruthenium(II) (Ru(quin)) in ER-positive (T47D) and triple-negative (MDA-MB-231) BC cell lines.

View Article and Find Full Text PDF

A corrole-based derivative as an ultra-fast response and high selective fluorescent probe for Mg and its application.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.

A new corrole derivative bearing 8-hydroxyquinoline moiety, which was labeled as 8-HQ-Corrole, serves as an efficient fluorescent probe for Mg in the presence of various interferents. This probe 8-HQ-Corrole displayed an ultra-fast response (2 s) to Mg with an impressive detection limit (33 nM) and a significant fluorescence enhancement, accompanying with a blue shift from 667 to 653 nm in fluorescence spectrum. MS and Job's plot analysis indicated that the enhanced fluorescence response was attributable to the formation of 1:2 stoichiometric complex between to Mg and 8-HQ-Corrole involving quinoline nitrogen and oxygen atoms.

View Article and Find Full Text PDF
Article Synopsis
  • Selective binding and optical sensing of Zn(II) and Cd(II) in water were studied using different receptors (L1, HL2, L3, HL4, HL5) to see how complex stability affects metal signaling.
  • The receptors all have a cyclic tetra-amine structure combined with either one or two quinoline or 8-hydroxyquinoline units, influencing their properties and interactions.
  • The study showed that Zn(II) forms more stable complexes with some receptors, while Cd(II) complexes benefit from better fitting in specific cavities, leading to unique optical behaviors for each metal in their respective complexes.
View Article and Find Full Text PDF

Crystal structures and photophysical properties of mono- and dinuclear Zn complexes flanked by tri-ethyl-ammonium.

Acta Crystallogr E Crystallogr Commun

October 2024

Department of Chemistry, KU Leuven, Biomolecular Architecture, Celestijnenlaan 200F, Leuven (Heverlee), B-3001, Belgium.

Two new zinc(II) complexes, tri-ethyl-ammonium di-chlorido-[2-(4-nitro-phen-yl)-4-phenyl-quinolin-8-olato]zinc(II), (CHN){Zn(CHNO)Cl] (), and bis-(tri-ethyl-ammonium) {2,2'-[1,4-phenyl-enebis(nitrilo-methyl-idyne)]diphenolato}bis-[di-chlorido-zinc(II)], (CHN)[Zn(CHNO)Cl] (), were synthesized and their structures were determined using ESI-MS spectrometry, H NMR spectroscopy, and single-crystal X-ray diffraction. The results showed that the ligands 2-(4-nitro-phen-yl)-4-phenyl-quinolin-8-ol () and ,'-bis-(2-hy-droxy-benzyl-idene)benzene-1,4-di-amine () were deprotonated by tri-ethyl-amine, forming the counter-ion EtNH, which inter-acts an N-H⋯O hydrogen bond with the ligand. The Zn atoms have a distorted trigonal-pyramidal () and distorted tetra-hedral () geometries with a coord-ination number of four, coordinating with the ligands N and O atoms.

View Article and Find Full Text PDF

8-Hydroxyquinoline and imidazole, two important N-heteroaromatic systems, have a strong affinity towards various anions their acidic OH or NH protons. Three receptor ligands, 5-(1-benzo[]imidazol-2-yl)quinolin-8-ol (1), 5-(benzo[]thiazol-2-yl)quinolin-8-ol (2), and 4-(1-benzo[]imidazol-2-yl)benzene-1,3-diol (3), were synthesized, and their fluoride (F) ion binding properties were investigated. These ligands could selectively bind F ions, and their respective F complexes, namely, 1-TBAF, 2-TBAF, and 3-TBAF (TBAF = tetrabutylammonium fluoride), were characterized using single crystal X-ray analysis, NMR, UV-vis, Hirshfeld surface (HS) analysis and computational studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!