We present low-temperature electronic transport properties of superconducting nanowires obtained by nanolithography of 4-nm-thick niobium nitride (NbN) films epitaxially grown on sapphire substrate. Below 6 K, clear evidence of phase slippages is observed in the transport measurements. Upon lowering the temperature, we observe the signatures of a crossover between a thermal and a quantum behavior in the phase slip regimes. We find that phase slips are stable even at the lowest temperatures and that no hotspot is formed. The photoresponse of these nanowires is measured as a function of the light irradiation wavelength and temperature and exhibits a behavior comparable with previous results obtained on thicker films.

Download full-text PDF

Source
http://dx.doi.org/10.1021/nl3010397DOI Listing

Publication Analysis

Top Keywords

phase slips
8
niobium nitride
8
nitride nbn
8
quantum thermal
4
phase
4
thermal phase
4
slips superconducting
4
superconducting niobium
4
nbn ultrathin
4
ultrathin crystalline
4

Similar Publications

Adolescent primary hyperparathyroidism.

Best Pract Res Clin Endocrinol Metab

January 2025

Department of Endocrinology, Seth G.S. Medical College and King Edward Memorial Hospital, Mumbai, India. Electronic address:

Adolescent primary hyperparathyroidism (PHPT) is a rare endocrine disorder bearing distinctions from the adult form. This review examines its unique aspects, focusing on clinical presentation, genetic etiologies, genotype-phenotype correlations, and therapeutic management. Adolescent PHPT often has a genetic basis, whether familial, syndromic, or apparently sporadic, and identifying the underlying genetic cause is important for patient care.

View Article and Find Full Text PDF

The existing landslide monitoring methods are unable to accurately reflect the true deformation of the landslide body, and the use of a single SAR satellite, affected by its revisit cycle, still suffers from the limitation of insufficient temporal resolution for landslide monitoring. Therefore, this paper proposes a method for the dynamic reconstruction and evolutionary characteristic analysis of the Gaojiawan landslide's along-slope deformation based on ascending and descending orbit time-series InSAR observations using Kalman filtering. Initially, the method employs a gridded selection approach during the InSAR time-series processing, filtering coherent points based on the standard deviation of residual phases, thereby ensuring the density and quality of the extracted coherent points.

View Article and Find Full Text PDF

Simulated effects of surgical corrections on bone-implant micromotion and implant stresses in paediatric proximal femoral osteotomy.

Comput Biol Med

February 2025

Griffith Center of Biomedical and Rehabilitation Engineering (GCORE), Griffith University, Australia; School of Medicine and Dentistry, Griffith University, Australia; Department of Orthopaedics, Children's Health Queensland Hospital and Health Service, Australia. Electronic address:

Background And Objective: Proximal femoral osteotomy (PFO) is a surgical intervention, typically performed on paediatric population, that aims to correct femoral deformities caused by different pathologies (e.g., slipped capital femoral epiphysis).

View Article and Find Full Text PDF

Synchronization plays a crucial role in the dynamics of living organisms. Uncovering the mechanism behind it requires an understanding of individual biological oscillators and the coupling forces between them. Here, a single-cell assay is developed that studies rhythmic behavior in the motility of E.

View Article and Find Full Text PDF

Kinetics of Symmetrical Versus Asymmetrical In-Phase Gaits During Arboreal Locomotion.

J Exp Zool A Ecol Integr Physiol

October 2024

School of Health Sciences, Cleveland State University, Cleveland, Ohio, USA.

Quadrupedal animals traveling on arboreal supports change aspects of locomotion to avoid slipping and falls. This study compares locomotor biomechanics in two small mammals: first, the gray short-tailed opossum (Monodelphis domestica) predominantly trots, which is a symmetrical gait. The second species, the Siberian chipmunk (Tamias sibiricus), primarily bounds or half-bounds.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!