Gain-of-function mutations of KCNJ11 can cause permanent neonatal diabetes mellitus, but only rarely after 6 months of age. Specific uncommon mutations KCNJ11give rise to a syndrome defined as developmental delay, epilepsy, and neonatal diabetes (DEND), or - more frequently - to a milder sub-type lacking epilepsy, denoted as intermediate-DEND (iDEND). Our aim was to consider a possible monogenic etiology in a 12-yr-old boy with early onset diabetes and mild neurological features. We studied a subject diagnosed with diabetes at 21 months of age, and negative to type 1 diabetes autoantibodies testing. He had learning difficulties during primary school, and a single episode of seizures at the age of 10 yr. We performed direct DNA sequencing of the KCNJ11 gene with subsequent functional study of mutated channels in COSm6 cells. The patient's clinical response to oral glyburide (Glyb) was assessed. Motor coordination was evaluated before and after 6 and 12 months of Glyb therapy. Sequencing of the KCNJ11 gene detected the novel, spontaneous mutation S225T, combined with deletion of amino acids 226-232. In vitro studies revealed that the mutation results in a K(ATP) channel with reduced sensitivity to the inhibitory action of ATP. Glyb improved diabetes control (hemoglobin A1c on insulin: 52 mmol/mol/6.9%; on Glyb: 36 mmol/mol/5.4%) and also performance on motor coordination tests that were impaired before the switch of therapy. We conclude that KCNJ11/S225T, del226-232 mutation caused a mild iDEND form in our patient. KCNJ11 should be considered as the etiology of diabetes even beyond the neonatal period if present in combination with negative autoantibody testing and even mild neurological symptoms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3747824PMC
http://dx.doi.org/10.1111/j.1399-5448.2012.00874.xDOI Listing

Publication Analysis

Top Keywords

motor coordination
12
diabetes
8
kcnj11/s225t del226-232
8
del226-232 mutation
8
neonatal diabetes
8
mild neurological
8
sequencing kcnj11
8
kcnj11 gene
8
glyburide ameliorates
4
ameliorates motor
4

Similar Publications

Background And Purpose: To develop a new test to assess the motor coordination of the upper limbs, and to investigate the test-retest and inter-rater reliability, construct validity, standard error of measurement (SEM), minimum detectable change (MDC), and the reference values.

Methods: The Upper Extremity Motor Coordination Test (UEMOCOT)was applied for 20 s, with the individual touching two targets (one right and one left) as quickly as possible, first with the hand (manual task) and then with the index finger (finger task). To test-retest reliability, the UEMOCOT was administered two times.

View Article and Find Full Text PDF

In recent times, a truly exquisite pharmaceutical marvel has graced the world of medicine, known as Safinamide (SAF). This opulent creation has been specifically tailored to cater to the needs of individuals afflicted with Parkinson's disease (PD), an esteemed neurological condition renowned for its regal ability to impede motor skills, coordination, and equilibrium. It is highly improbable that degradation products of pharmaceutical components would significantly compromise efficiency and safety of a drug during its shelf life.

View Article and Find Full Text PDF

C1q/TNF-related protein 14 (CTRP14), also known as C1q-like 1 (C1QL1), is a synaptic protein predominantly expressed in the brain. It plays a critical role in the formation and maintenance of the climbing fiber-Purkinje cell synapses, ensuring that only one single winning climbing fiber from the inferior olivary neuron synapses with the proximal dendrites of Purkinje cells during the early postnatal period. Loss of CTRP14/C1QL1 results in incomplete elimination of supernumerary climbing fibers, leading to multiple persistent climbing fibers synapsing with the Purkinje cells.

View Article and Find Full Text PDF

Driving is a complex task that requires effective neural processing and coordination, which degrade with aging. Previous studies suggest that age-related changes in cognitive and motor functions can influence driving performance. Herein, we investigated age-related differences and differences between reactive and proactive driving in blink behavior-related potentials, and source-level functional connectivity.

View Article and Find Full Text PDF

Despite the development of various motor learning models over many decades, the question of which model is most effective under which conditions to optimize the acquisition of skills remains a heated and recurring debate. This is particularly important in connection with learning sports movements with a high strength component. This study aims to examine the acute effects of various motor learning models on technical efficiency and force production during the Olympic snatch movement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!