A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis and structure of amido- and imido(pentafluorophenyl)borane zirconocene and hafnocene complexes: N-H and B-H activation. | LitMetric

Treatment of Me(2)S·B(C(6)F(5))(n) H(3-n) (n=1 or 2) with ammonia yields the corresponding adducts. H(3)N·B(C(6)F(5))H(2) dimerises in the solid state through N-H···H-B dihydrogen interactions. The adducts can be deprotonated to give lithium amidoboranes Li[NH(2)B(C(6)F(5))(n)H(3-n)]. Reaction of the n=2 reagent with [Cp(2)ZrCl(2)] leads to disubstitution, but [Cp(2)Zr{NH(2)B(C(6)F(5))(2)H}(2)] is in equilibrium with the product of β-hydride elimination [Cp(2)Zr(H){NH(2)B(C(6)F(5))(2)H}], which proves to be the major isolated solid. The analogous reaction with [Cp(2)HfCl(2)] gives a mixture of [Cp(2)Hf{NH(2)B(C(6)F(5))(2)H}(2)] and the N-H activation product [Cp(2)Hf{NHB(C(6)F(5 )(2)H}]. [Cp(2)Zr{NH(2)B(C(6)F(5))(2)H}(2)]·PhMe and [Cp(2)Hf{NH(2)B(C(6)F(5))(2)H}(2)]·4(thf) exhibit β-B-agostic chelate bonding of one of the two amidoborane ligands in the solid state. The agostic hydride is invariably coordinated to the outside of the metallocene wedge. Exceptionally, [Cp(2)Hf{NH(2)B(C(6)F(5))(2)H}(2)]⋅PhMe has a structure in which the two amidoborane ligands adopt an intermediate coordination mode, in which neither is definitively agostic. [Cp(2)Hf{NHB(C(6)F(5))(2)H}] has a formally dianionic imidoborane ligand chelating through an agostic interaction, but the bond-length distribution suggests a contribution from a zwitterionic amidoborane resonance structure. Treatment of the zwitterions [Cp(2)MMe(μ-Me)B(C(6)F(5))(3)] (M=Zr, Hf) with Li[NH(2)B(C(6)F(5))(n)H(3-n)] (n=2) results in [Cp(2) MMe{NH(2)B(C(6)F(5))(2)H}] complexes, for which the spectroscopic data, particularly (1)J(B,H), again suggest β-B-agostic interactions. The reactions proceed similarly for the structurally encumbered [Cp''(2)ZrMe(μ-Me)B(C(6)F(5))(3)] precursor (Cp''=1,3-C(5)H(3)(SiMe(3))(2) , n=1 or 2) to give [Cp''(2)ZrMe{NH(2)B(C(6)F(5))(n)H(3-n)}], both of which have been structurally characterised and show chelating, agostic amidoborane coordination. In contrast, the analogous hafnium chemistry leads to the recovery of [Cp''(2)HfMe(2)] and the formation of Li[HB(C(6)F(5))(3)] through hydride abstraction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201200704DOI Listing

Publication Analysis

Top Keywords

solid state
8
amidoborane ligands
8
chelating agostic
8
synthesis structure
4
structure amido-
4
amido- imidopentafluorophenylborane
4
imidopentafluorophenylborane zirconocene
4
zirconocene hafnocene
4
hafnocene complexes
4
complexes n-h
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!